Project Title	Watercress: Predicting the effect of agronomic production factors on the flavour acceptability to consumers
Annual Report	November 2005
Contract No	FV 255
Project Leader	Dr Richard Stanley Campden & Chorleywood Food Research Association Chipping Campden Gloucestershire, GL55 6LD
Project Co ordinators	Nick Saunders, Agriculture Department, CCFRA Chantal Gilbert, Consumer & Sensory Science Department CCFRA Robert Levermore, Chemistry Department, CCFRA
Report	Annual Report November 2005.
Location	Vitacress Salads, St. Mary Bourne, Hampshire
Date commenced	1 st May 2005
Date Completed	30 th November 2005.
Key words	Watercress, agronomy, sensory quality, consumer, chemical analysis

Whist reports issued under the auspices of the HDC are prepared from the best available information, neither the authors nor the HDC can accept any responsibility for inaccuracy or liability for loss, damage or injury from the application of any concept or procedure discussed.

The contents of this publication are strictly private to HDC members. No part of this publication may be copied or reproduced in any form or by any means without prior written permission of the Horticultural Development Council.

TABLE OF CONTENTS

GROWER SUMMARY1Headlines1Action Points For Growers6SCIENCE SECTION71. Background7	7 7
Headlines 1 Action Points For Growers 6 SCIENCE SECTION 7 1. Background 7	5 7 7
Action Points For Growers 6 SCIENCE SECTION 7 1. Background 7	5 7 7
SCIENCE SECTION71. Background7	7
1. Background 7	7
1. Background 7	7
5	
2. Materials and Methods 7	
2.1 Agronomy 7	
2.1.1 Stage 1 8	
2.1.2 Stage 2 9	
5	11
5	12
	12
	13
,	13
	14
,	14
	14
5	14
	14
testing	
	15
	15
	16
	17
	17
	17
- 5 5	17
3.1.2 Chemical analysis 1	18
3.1.3 Sensory analysis 2	20
3.2 Stage 2 – replicated trial 2	22
	22
3.2.2 Chemical analysis 2	22
	27
3.3.1 Agronomy 2	27
	27
	29
	33
	34
data	
	40
	54
	75
	32
the study	

GROWER SUMMARY

Headlines

- Relationships were identified between chemical volatile constituents of watercress and the profile of sensory attributes. These are significant as they provide a means to predict the sensory properties of watercress from the results of analysis.
- Some attributes were found to be strongly correlated to the concentration of individual chemical components. Thus the intensity of these flavour attributes may be predicated from the intensity of these indicator compounds.
- The work has provided valuable information regarding the likely drivers of consumer liking for watercress as well as the basis for an analytical approach to monitor these sensory attributes.
- The results provide a platform for progression to phase 2 of the study in which the effect of agronomic effects on flavour will be determined.

Background

A study was carried out to determine the links between sensory attributes, consumer preference and chemical compositional analysis in watercress. Previous work had established that consumer preference was influenced by both flavour and texture of the samples, including crisp and chewy textures and hot, sweet, and grassy/green flavours. Phenyethlyisothiocyanate (PEITC) levels were also investigated, due to its proven health benefits.

This study set out to determine the possible effects of agronomic treatments on the resulting flavour profiles of the samples and the possible result on consumer preference. Its objective was to optimise certain volatile compounds in the crop, particularly PEITC, with them aim of increasing consumer preference, and hence increasing the level of consumption, which would result in health benefits for the population.

Approach

There were 3 main stages to the work: The first stage involved a scoping trial in which commercial sulphur treatments were used alongside a waterstress treatment. This was to ascertain the concentrations of products that could be utilised in subsequent trials. Two commercial sulphur treatments were used: Hortisul and Sulphomex. The second stage of work used a replicated trial design to understand how repeated applications of sulphur product, used throughout the growing period, could influence the level of flavour volatiles in the crop. The final phase of work utilised a validation trial, in which two treatments identified in stage 2, were used to determine consumer preference against the control.

Data from all tests were statistically analysed and related in order to understand perceptual differences and consumer acceptance in terms of chemical composition (flavour volatiles).

The study design for trials is summarised below:

Samples generated	Objective	Chemistry	Sensory
Trial 1 – 1. Control 2. Sulphomex 5l/ha 3. Sulphomex 15l/ha 4. Hortisul 20kg/ha 5. Hortisul 40kg/ha 6. Waterstress	To identify agronomic treatments e.g sulphur products, concentrations and waterstress, to be used in subsequent trials.	Chemical analysis of flavour volatiles and total sulphur content.	Discrimination testing (triangle test)
Trial 2 – 1. 4 x 30kg/ha Hortisul 2. 4 x 50kg/ha Hortisul 3. 2 x 30kg/ha Hortisul 4. 2 x 50kg/ha Hortisul 5. Control	To determine the effect of repeated sulphur applications to the growing crop on the flavour volatiles	Chemical analysis of flavour volatiles	None
Trial 3 – 1. 4 x 30kg/ha Hortisul 2. Control 3. 4 x 50kg/ha Hortisul	To validate trial 2 objectives and generate samples for consumer trial	Chemical analysis of flavour volatiles	Consumer preference test

Discussion

Initial scoping studies (stage 1) indicated that applications of sulphur compounds to growing watercress produced a trend of increased levels of total sulphur in the plant tissue. These increases ranged from to 4 to 14%. Sulphomex appeared to give a higher level of total sulphur in the resulting plant tissue compared to Hortisul. However, Hortisul tended to yield larger amounts of PEITC in the watercress than Sulphomex from these initial scoping trials. As PEITC was of particular interest in this piece of work , Hortisul was utilised in subsequent trials.

In terms of sensory discrimination test carried out during the initial scoping trial, there were no significant differences between the treatment samples and the control sample. Although the triangle test revealed no significant differences, waterstress treatment did appear to have a larger impact on sensory perception than the sulphur treatments, with more assessors correctly identifying a difference between the waterstress and control samples.

Results of stage 2 showed trends which suggested that four repeated applications of Hortisul yielded higher levels of PEITC than 2 repeated applications in the replicated trials. However, this difference was not significant.

The application of stress to the crop by witholding water seemed to have a greater effect on flavour profiles than sulphur applications, as indicated by the large number of volatiles showing significant differences between the waterstressed sample and the remaining samples.

In terms of stage 3, there were no significant differences in consumer preference between the three samples generated (i.e. 4 low applications, 4 high applications and the control). All 3 samples recorded acceptable levels of liking across all the attributes, but no sample was significantly liked more than another. Sample 2 (the control sample), was the least liked sample across all attributes, but again these values were not significant. From the consumer data, sample 3 (where there had been 4 repeated applications of Hortisul at a high level) generally, appeared to be the most favoured sample.

In terms of chemical analysis, the results from the initial scoping trial appeared to indicate a clear trend for an increase in sulphur-containing compounds, including 2phenylethyl isothiocyanate (PEITC), in watercress subjected to waterstress or treated with high levels of Hortisul. This trend was still apparent, though less pronounced, in the waterstressed samples analysed for trial 2, but was not observed in the samples analysed for trial 3. The reason for this is unknown. This particular sulphurcontaining compound, 2-phenylethyl isothiocyanate, considered to possess anticarcinogenic properties, was found to be by far the largest volatile peak detected in all of the watercress samples analysed. This could be considered the most important volatile within the full range that have been analysed. Results of trial 2 seemed to suggest that 2-phenylethyl isothiocyanate could be increased using the 4 low application and 4 high application treatments. However, this was not confirmed during the validation study in phase 3, in which control samples had higher levels. This may be a reflection of the metabolic state of the crop utilised, under the prevailing environmental conditions within each trial. Despite the lack of significance in trial 2, it was decided to continue with the validation trial in order to investigate this trend further and determine its impact on consumer preference.

3

Studies on the effect of ageing and cooking of watercress indicated that both processes, particularly cooking, significantly reduced the levels of many volatile compounds in watercress, and that the sulphur-containing compounds were among those most affected. For 2-phenylethyl isothiocyanate ageing watercress for 4 days resulted in a 10% drop in the peak area of this compound, while cooking watercress resulted in a drop in 2-phenylethyl isothiocyanate to less than 1% of its level before cooking. It was therefore clear that this and other volatiles were very susceptible to effects of storage and heating. This should be a consideration in the processing of watercress samples in relation to the health benefits of the crop.

From a commercial viewpoint, the variability in trial results and lack of significant preference between samples, make it difficult to issue specific recommendations relating to the specific agronomic treatment of watercress, for both enhancing sensory and consumer perception and increasing the levels of PEITC. However, trends generally suggested that higher repeated levels of sulphur applications could increase levels of PEITC and that waterstress could also have an effect on the flavour profile. From an agronomic viewpoint, results from trial 2, in which a replicated block design was used, may have given more reliable results than those from the other trials. This therefore suggested that repeated applications of higher concentrations of sulphur products, could have an effect on PEITC content, as these treatments resulted in the higher peak areas, following chemical analysis. This could therefore suggest that there is a possible cumulative effect of sulphur applications in terms of PEITC formation in the growing crop.

Regarding the impact of the agronomic treatments investigated on sensory quality, results from stage 1 suggest that differences in agronomic treatments (within the scope of those studied) may not lead to significant perceivable differences between watercress samples. Furthermore, based on the selected group of consumers, results of stage 3 appear to indicate that the selected agronomic treatments may not have a large impact on consumer preference of the watercress. Therefore, we could perhaps suggest that decisions on the type of agronomic treatments to utilise, can focus instead on economic or health factors, as these may not necessarily be having a negative influence on the consumer.

It is possible that increasing the concentration or application timings of the sulphur products could have resulted in a corresponding increase in levels of PEITC. Similarly an increase in the level of waterstressing could have had the same effect.

These approaches were outside of the scope of this present study, but could form the basis of further field trials.

Summary

The sulphur compounds utilised in this study did have an effect upon the total sulphur content of the watercress samples when applied to the growing crop. This however, did not result in significant increases in levels of the sulphur-containing compound PEITC. Results from the stage 1 trial did suggest that PEITC was increased in watercress by sulphur applications. However, this was not supported in the volatile analysis results of the final validation trial. There was no indication that agronomic treatments had any effect in increasing consumer acceptability of watercress.

PEITC was found to be the largest volatile peak detected in all of the watercress samples analysed. The levels of PEITC within watercress were shown to be significantly reduced during storage of watercress and by cooking. These are therefore important considerations for processing in terms of the proven health benefits of this volatile compound.

Sulphur applications to the growing crop did not appear to alter its sensory perception to any significant level. In difference tests assessors were unable to identify significant differences between the treated samples and the untreated samples. Although the triangle test revealed no significant differences, waterstress treatment did appear to have a larger impact on sensory perception within the initial trial than the sulphur treatments, with more assessors correctly identifying a difference between the waterstress and control samples.

Summary of results

The data from this study indicated that sulphur applications to the growing crop resulted in an increase in the level of total sulphur in the growing crop. This indicated that it could result in an increase in sulphur-containing phenylethyliothiocyanate (PEITC), which has proven health benefits. PEITC was found to be the largest volatile peak detected in all of the watercress samples analysed. The levels of PEITC within watercress were shown to be significantly reduced during storage of watercress and by cooking. These are therefore important considerations for processing in terms of the proven health benefits of this volatile compound.

Sulphur applications to the growing crop did not appear to alter its sensory perception to any significant level. In difference tests assessors were unable to identify significant differences between sulphur or waterstress treated samples and untreated samples. Although the difference was not significant, application of stress to the crop by withholding water before harvest, did appear to have a larger impact on sensory perception within the initial trial than the sulphur treatments, with more assessors correctly identifying a difference between the waterstress and control samples.

Further work

Further work could involve the utilisation of differing agronomic factors that might influence flavour volatiles in the growing crop. This could include the more extensive use of concentrations of sulphur products and more regular applications to the growing crop. This might lead to a greater increase in PEITC than was measured in this current study.

Action Points for Growers

Although there are not direct results for this project that can be utilised, growers should be alert to PEITC being a unique selling point for watercress (increased flavour and health benefit) which is found at highest levels in uncooked watercress.

SCIENCE SECTION

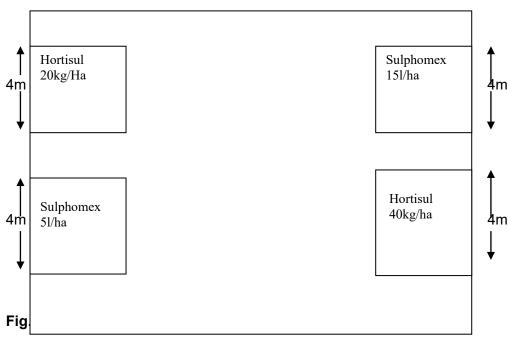
1. Background

This report represents the second phase of project work for the HDC on "Predicting the effect of agronomic production factors on the flavour acceptability of watercress to consumers" (project FV 255). The first phase of project work, carried out in 2004, had investigated the links between sensory attributes, consumer preference and chemical compositional analysis. The work had established that consumer preference was influenced by both the flavour and texture of the watercress samples. which included crisp and chewy textures and hot, sweet and grassy/green flavours. This second phase of work reported here utilised agronomic treatments in a series of field trials in order to generate samples for chemical and sensory analysis, concentrating upon the use of agronomic factors that might influence the volatile components of the watercress crop and the resulting flavour profiles. In turn, the work set out to determine whether the agronomic factors utilised in the field trials could influence consumer acceptability of the resulting product. If the levels of certain volatile components can be optimised in the crop it will be seen as a means of improving flavour preferences or marketability, and hence increasing the consumption of the crop. This would be of great commercial significance to growers and would have obvious health benefits for consumers.

2. Materials and Methods

2.1 Agronomy

There were 3 main stages involved in the agronomic treatments of the watercress. The first stage represented a scoping trial, which aimed to determine the range of sulphur applications and type of commercial product to be used in subsequent investigations. The second stage represented a replicated trial whereby the optimum applications of product types utilised in the scoping trial were identified and the level of volatiles in the treated samples was determined. Selected treatment levels were used in the final stage of trial work. The third and final stage utilised the optimised concentrations of specified sulphur products, in order to attempt to increase the Phenylethylisothiocyanante (PEITC) levels in the growing crop and determine consumer preference. All stages of the agronomic treatments sought to compare the levels of volatiles, such as PEITC, in the growing crop, with the final stage also looking to correlate these levels with consumer preference. In addition, the possibility that consumer preference may be correlated with some other sensory aspect and chemical volatile in the watercress, was explored. All trial work was carried out in collaboration with Vitacress Salads, St Mary Bourne, Hampshire, during May-September, 2005.


2.1.1 Agronomy Stage 1.

This trial was carried out in order to determine the range of sulphur concentrations that could be used on the watercress crop in subsequent studies and identify any possible phytotoxic effects following application. In addition, two commercially available sulphur products were used in this study and this initial stage served to identify which product should be used in subsequent studies. The scoping trial included both chemical and sensory discrimination testing.

Two different sulphur products were utilised in this initial scoping trial. These were both commercially sourced and were as follows:

- Sulphomex Nitrogen 12.0 % w/w, 15.8 %w/v, Sulphur 65.0% w/w, 85.0% w/v. A liquid formulation
- Hortisul K₂O (52%), S (18%), a granulated powder.

The scoping trial involved the application of sulphur products at the following rates: Sulphomex at 5l/ha, Sulphomex at 15l/ha, Hortisul at 20kg/ha, Hortisul at 40kg/ha. 4 x 2m plots were treated in each case. Applications were made using a knapsack boom sprayer May 27th 2005.

The trial plan is shown below:

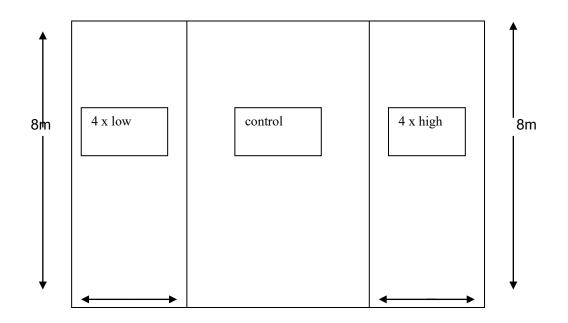
Plots were harvested 3 days following the sulphur applications. A crop was also subject to waterstress, whereby the base of the crop stayed damp but the flow of water was restricted for 48 hours. No visible wilting or symptoms were apparent as a result of this treatment. Waterstressed samples were harvested the following day. An untreated control sample was also included for analysis. All crops were harvested by hand and were cut just above the level of the gravel bed following commercial practice.

Samples from this trial were evaluated by a sensory panel of 18 persons using a triangle test on May 31st 2005. Samples were also analysed using chemical volatile analysis.

2.1.2 Agronomy - Stage 2.

In the 2nd stage of applications Hortisul was used as the only sulphur application to the watercress crop. The results in stage 1 suggested that greater levels of Phenylethylisothiocyanante (PEITC) were detected in Hortisul treated compared to Sulphomex. The approach to the second phase of applications was to apply a high rate vs. a low rate of Hortisul, with 4 repeated applications compared to 2 repeated applications. This was detailed following guidance from the National Farmers Union (NFU) watercress group and allowed determination of the effect of the concentration of the product or the application period, on the level of volatile compounds in the crop. Application rates utilised were 30kg/ha (low) and 50kg/ha (high). The 4 repeated applications were made at weekly intervals for a period of 4 weeks. The 2 repeated applications were made in the last 2 weeks of the growing period. This trial utilised applications and products identified in phase 1 of the study. This was a fully replicated trial that used four sulphur applications: 4 high applications (50kg/ha), 4 low applications (30kg/ha), 2 high applications (50kg/ha) and 2 low applications (30kg/ha). This was to determine the relative effects of concentration and applications timings on the level of volatiles of the resulting crop. As with Stage 1, a waterstressed and untreated control sample were also included in the study design, both fully replicated within the trial. Chemical analysis alone was used in stage 2 of this investigation.

The trial plan is shown in fig.2.


Plot 1 (4 x high)	Plot 2 (control)	Plot 3 (2 x low)
Plot 4 (4 x low)	Plot 5 (2 x high)	Plot 6 (4 x high)
Plot 7 (2 x high)	Plot 8 (4 x high)	Plot 9 (control)
Plot 10 (2 x low)	Plot 11 (4 x low)	Plot 12 (2 x high)
Plot 13 (control)	Plot 14 (2 x low)	Plot 15 (4 x low)

All crops were harvested by hand on July 29th 2005 and were cut just above the level of the gravel bed as in commercial practice.

2.1.3 Agronomy - Stage 3.

In the final phase of experimental work, only two sulphur treatments were used. Four applications of Hortisul at high rate (50kg/ha) and four applications at low rate (30kg/ha). These were applied at weekly intervals over a period of 4 weeks. In addition, an untreated control sample was included in the trial.

Selection of sulphur treatments was based upon results obtained from the cumulative effect of repeated applications of the sulphur compounds in stage 2. Sulphur applications were made on a weekly basis for a period of 4 weeks with samples sourced five days after the last application of Hortisul to the growing crop. 8kg of watercress was harvested from each of the plots on September 28th 2005. The trial plan is shown below:

Fig. 3 Trial design for stage 3

Sulphur applications were made from the sides of the plots at the width of the boom (2 metres).

Analysis involved chemical determination of volatiles and level of consumer preference of the watercress samples.

The study design for trials is summarised below:

Samples generated	Objective	Chemistry	Sensory

Trial 1 – 1. Control 2. Sulphomex 5l/ha 3. Sulphomex 15l/ha 4. Hortisul 20kg/ha 5. Hortisul 40kg/ha 6. Waterstress	To identify agronomic treatments e.g. sulphur products, concentrations and waterstress, to be used in subsequent trials.	ronomic analysis of atments e.g. flavour volatiles and total sulphur products, ncentrations and terstress, to be ed in subsequent	
Trial 2 – 6. 4 x 30kg/ha Hortisul 7. 4 x 50kg/ha Hortisul 8. 2 x 30kg/ha Hortisul 9. 2 x 50kg/ha Hortisul 10. Control	To determine the effect of repeated sulphur applications to the growing crop on the flavour volatiles	Chemical analysis of flavour volatiles	None
Trial 3 – 4. 4 x 30kg/ha Hortisul 5. Control 6. 4 x 50kg/ha Hortisul	To validate trial 2 objectives and generate samples for consumer trial	Chemical analysis of flavour volatiles	Consumer preference test

 Table 1. Treatments and samples generated in each of the trials.

2.2 Chemical analysis: Extraction of Volatiles by Headspace Solid Phase Micro Extraction (SPME)

Samples from all three stages of the study were analysed for volatile content.

2.2.1 Sample Preparation

For each sample, 50g of watercress was weighed into a metal beaker. The watercress was pushed down into the beaker until all the watercress was in the bottom half. Sufficient liquid nitrogen was then added to the beaker to completely cover the watercress, and the resulting mixture was thoroughly blended using an overhead macerator. After blending, the beaker was left to allow any liquid nitrogen remaining in the sample to evaporate. This was encouraged by occasional gentle stirring with a spatula. Once the liquid nitrogen had evaporated, 20g of salt and 50ml of distilled water was added to the watercress and mixed to a homogeneous state by stirring with a spatula. 10g portions of the watercress mixture were then transferred into 20ml headspace vials, where 100µl of 100ppm 1-bromohexane solution in ethanol was added. The vials were then sealed, and either put on the GC/MS autosampler immediately for analysis or placed in chilled storage to await analysis.

In addition as part of trial 2, some watercress samples were cooked. These samples were boiled for two minutes, drained and then prepared in the same manner as the other samples.

2.2.2 Sample Analysis

Each vial was equilibrated at 75°C for 15 minutes with agitation. The headspace of the vial was then sampled for 15 minutes at 75°C (with agitation) using a carboxen / polydimethylsiloxane coated SPME fibre. The volatiles adsorbed onto the fibre were analysed by thermal desorption at 250°C in the injector port of a GC/MS.

2.2.3 GC/MS Analysis of Volatiles

Analyses were carried out on a Varian 3800 gas chromatograph (GC) and Varian Saturn 2000 ion trap mass spectrometer (MS) via a CTC Combi-Pal autosampler.

GC/MS conditions were as foll	ows:
Column:	60m x 0.25mm fused silica with VF-5MS stationary phase
Helium carrier gas flow rate:	1ml. Min ⁻¹
Desorption temperature:	250°C
Column temperature:	2 mins at 50°C; then 5°C. min ⁻¹ to 250°C
MS analysis mode:	SCAN 29-350 m/z

All peaks considered to be of sufficient size to allow accurate measurement of peak area were tentatively identified by spectral matching with the Wiley library of mass spectral data. The peak areas obtained were then subjected to statistical analysis to determine what differences, if any, existed between the volatile profiles of the samples.

This chemical analysis was carried out for all 3 stages of the trial work.

2.2.4 Statistical analysis: Chemistry data

The chemistry data were analysed using analysis of variance (ANOVA) to determine if there were significant differences between the samples with respect to volatile

content. Following ANOVA, a Newman-Keuls multiple comparison test was undertaken to establish which samples were different at the 10% level of significance. Samples with the same letters are not significantly different from each other.

2.3 Sensory assessment

2.3.1 Stage 1 - Sensory discrimination testing

For stage 1 of the practical phase of work a simple triangle test was carried out to determine whether there were perceivable differences between the samples. Three samples were taken from the trial: Sulphomex at 15l/ha, Hortisul at 40kg/ha and the waterstressed sample. These represented extremes from the range of samples that were supplied (i.e. high applications). Each of these samples was assessed against the control (untreated). For a triangle test using 18 judgements, a minimum of 10 correct judgements are required to establish a significant difference between samples at the 5% level of significance (British Standard 5929: Part 3: 1984/ISO 4120 – 1983).

2.3.2 Stage 2

There was no sensory assessment of the stage 2 trial samples.

2.3.3 Stage 3 – Consumer preference testing

For assessment of the stage 3 samples a consumer panel was used. Three samples of watercress from the field trial were assessed. All attributes were assessed as individual samples. All samples were refrigerated at a temperature between 1 and 4°C. Products were sampled in rotation according to a defined experimental design. Samples were pre-coded and the same codes were used for all respondents. Samples were presented on white coded plates.

A total of 111 consumer respondents were recruited, being split over 2 locations, with 49% from Chester and 50% from Surrey. All respondents had eaten watercress within the last 12 months and all indicated that they would eat watercress in the future.

Sample Codes were as follows:

SF Code	Name	Treatment	ID Code
AG/85493/T3/1	4 x Low	4 x Low	240
AG/85493/T3/2	Control	Control	637
AG/85493/T3/3	4 x High	4 x High	921

2.3.3.1 Sample Preparation

Prior to the assessment the samples were washed thoroughly and the young centre stalks removed for assessment. Each respondent was presented with 3-4 sprigs of watercress on a coded plate. Water and cream crackers were given as palate cleansers. Respondents were requested to use the palate cleansers between samples.

2.3.3.2 Test Method Consumer

A total of 111 consumer respondents were recruited. The test was a street recruited central location test. Each respondent was asked to assess the three samples of watercress.

Respondents were asked to evaluate each of the samples and complete a questionnaire.

Degree of liking was measured for overall liking, flavour and aftertaste. Consumer satisfaction (just about right) was also measured for bitterness, hotness of flavour and strength of aftertaste. The consumer data were analysed to identify the most and least acceptable samples.

A 9-point hedonic scale was used to capture respondents degree of liking of the products characteristics. A 5-point "Just about Right" scale was used for specific attributes.

Hedonic Scale				Just about Right	
Like extremely	9			5	Much too strong / too
much					
Like very much	8			4	A little too strong / too
much					
Like moderately	7	3	3	Just a	bout right

©2005 Horticultural Development Council

Like slightly62A little too mild / not enoughNeither like or dislike51Much too mild / not enoughDislike slightly4--Dislike moderately3--Dislike very much2--Dislike extremely1--

2.3.3.3 Data Analysis : Consumer data

The data was analysed by a number of methods, which are described below. The statistical package used was S-Plus and SPSS.

The data were tabulated to indicate the count and percentage of responses for each of the scores per sample, for both the hedonic and just about right questions. Summary statistics were provided on each sample.

ANOVA

The hedonic data were then analysed using analysis of variance (ANOVA) to determine if there were significant differences between the samples with respect to acceptability. Following ANOVA, a Newman-Keuls multiple comparison test was undertaken to establish which samples were different at the 5% level of significance. Samples with the same letters are not significantly different from each other.

T-Test

A t-test was performed on the just about right attributes; bitter, hotness of flavour, strength of aftertaste, to establish if each sample was significantly different from the just about right score 3 (Hypothesis = 3).

2.3.3.4 Consumer Sample

A total of 111 consumer respondents were recruited, being evenly split over two locations, with 49% from Chester and 50% from Surrey. All respondents had eaten watercress within the last 12 months and all indicated that they would eat watercress in the future.

The majority of respondents were female, represented by 80% against 20% for male. The majority of respondents represented social class A/B/C1 (79%), with the remainder being C2/D/E (21%). Age ranged from 18 - 64. The full demographic results are shown in Appendix 1.

The statistical results are detailed in terms of a summary table showing significant differences and means. The letters in the table indicate where the samples are significantly different. Means sharing the same letter are not significantly different, whereas means that have different letters are significantly different to each other. The hedonic and Just about Right (JAR) full and summarised tabulations (count & %) are shown in Appendix 2.

<u>3. Results</u>

3.1 Stage 1 – Scoping trial

3.1.1 Agronomy results

Trial dates

Sulphur applications were made to a crop close to maturity (i.e. 4 weeks old) on May 27th 2005

Harvesting took place 4 days following the sulphur applications, on May 31st 2005

Samples

1	Untreated
2	Sulphomex (5l/ha)
3	Sulphomex (15l/ha)
4	Hortisul (20kg/ha)
5	Hortisul (40kgl/ha)
6	Water-stressed

Sulphur analysis

Sample	Oven dry matter	Total nitrogen	Total sulphur	Total S at 7 % dry matter
Untreated	7.9	5.98	0.96	0.85
Sulphomex (5l/ha)	5.9	5.90	1.02	1.21
Sulphomex (15l/ha)	6.3	6.13	1.10	1.22
Hortisul 920kg/ha)	6.4	5.79	1.03	1.13
Hortisul (40kg/ha)	6.1	5.88	1.00	1.14

Table. 2 Results from S analysis (adjusted to 7% dry matter)

Sulphur analysis suggested that applications of Sulphomex at a concentration of 15l/ha had a greater effect on increasing the level of total sulphur in the plant tissue. The highest level of Hortisul (40kg/ha) had the next greatest effect on increasing the total sulphur content. There were therefore indications, that application of sulphur compounds subsequently increased the level of sulphur in the leaf tissue of the growing crop.

3.1.2 Chemical analysis- Stage 1

Analysis of variance was carried out on all of the peaks chosen for examination (Appendix 2). These analyses showed significant differences in at least one of the treatments in the following peaks for 48 peaks. The most striking differences were detected between samples 5 (40kg/ha Hortisul) and 6 (waterstressed) and the remaining four treatments. However, without any comparable sensory data, it was not possible to determine the likely perceptual impact of the differences.

Ten sulphur-containing compounds (ethylthiophene, 4-methylpentyl isothiocyanate, hexyl isothiocyanate, n-heptyl isothiocyanate, 3-methylhexyl isothiocyanate, octyl isothiocyanate, methylheptyl isothiocyanate, nonyl isothiocyanate and 2-phenylethyl isothiocyanate) were present at significantly higher levels in treatment 4 (Hortisul at 40kg/ha) than in 1 (untreated), 2 (Sulphomex 5l/ha), 3 (sulphomex 15l/ha) and 4 (Hortisul 40kg/ha), and at significantly higher levels again in treatment 6 (waterstressed) than in 4 (Hortisul 40kg/ha). In addition, both samples 6 (waterstressed) and 4 (Hortisul 40kg/ha) had significantly higher levels of 1-hexanethiol compared to the other samples. 2-Phenylethyl isothiocyanate was by far the largest peak detected in the watercress chromatograms, with a peak area over 20 times larger than the next largest peak.

The following compounds were found at significantly lower levels in treatments 4 (Hortisul 40kg/ha) and 6 (waterstressed) than the other four treatments: a mixed peak of 1-penten-3-ol and 1-penten-3-one; benzenemethanol; 3-ethyl-4-methyl-IH-pyrrole-2,5-dione; 3-ethenyl-4-methyl-IH-pyrrole-2,5-dione; 4-ethoxybenzaldehyde; ethyl hydrocinnamate and 2,5-Dimethyl-1-phenylpyrrole. Of these compounds, 3-ethyl-4-methyl-1H-pyrrole-2,5-dione, 3-ethenyl-4-methyl-1H-pyrrole-2,5-dione and ethyl hydrocinnamate were also found at significantly higher levels in the untreated sample than in all the other treatments. The compound ethyl nicotinate followed the same trend (treatments 4 – Hortisul 40kg/ha, and 6 – waterstressed, lower than all other samples, and the untreated sample higher than all other samples), but pairwise differences were not found to be significant. Finally, treatments 4 (Hortisul 40kg/ha) and 6 (waterstressed) were significantly lower than treatments 2 (sulphomex 5l/ha) and 1 (untreated) for the compound 2-pentenal.

Hexanal, 2-hexenal and cis-3-hexenal were found at significantly higher levels in treatment 6 than in the other treatments. As the names suggest, these three compounds are extremely similar in structure. They all possess sensory properties described as 'green' in nature, although hexanal and 2-hexenal have also been described as 'fatty'. 2-Ethylfuran, 2,2,6,6-tetramethyl-3,5-heptanedione, methyl salicylate, 3-(methylthio)propyl isothiocyanate, 3-methylbutyl isothiocyanate, and cyclohexane methyl isothiocyanate (another sulphur-containing compound) were also found at higher levels in treatment 6 (waterstressed) than in the other treatments.

2,6-Nonadienal was found at a significantly lower level in treatment 6 (waterstressed) than in the other treatments. This compound possesses sensory characteristics described as 'oily', 'green', and 'cucumber' in nature.

It is apparent from the results of this trial that applying agronomic treatments to the watercress can affect its volatile composition. The two treatments that affected the volatile profiles the most were waterstress and high applications of Hortisul. Applying high levels of Hortisul to the watercress and subjecting it to waterstress were both found to lead to increases in the levels of the sulphur-containing isothiocyanates present. However, it is not possible to determine whether these differences would result in noticeable differences in the sensory properties of the watercress, or whether such differences, if present, would be desirable.

3.1.2 Sensory Analysis

Test No.	Sample	No. of Assessors	No. Correctly identifying the Different sample	Significance
1	Sulphomex 15l/ha	18	8	NSD
2	Hortisul 20kg/ha	18	5	NSD
3	Waterstress	18	9	NSD

Table. 3 Sample treatments and results from triangle test.

In terms of the triangle test, the samples of Sulphomex at 15l/ha, Hortisul at 20kg/ha and waterstressed sample were assessed against the control (untreated sample).

These represented the highest application rates of the scoping trial, where differences were most likely to have been detected. 18 assessors were used in each case. No significant differences were found between the samples in terms of sensory analysis. However, the waterstress sample was detected as the most different from the control, with 9 assessors identifying the sample as different. This was just under the minimum of 10 assessors needed for a significant difference, for a triangle test of this type.

The tables below list the descriptors of the three samples vs. the control. These describe the taste as perceived by the assessors in the triangle test. Table 3: Descriptors of Samples

Test Reference	e No. AG/85493/1
-----------------------	------------------

A Q/05 400/4/4	Control	Hotter taste (1)
		Hotter, stronger (1)
AG/85493/1/1		Milder, no acidic burn (1)
		Weaker, less hot (1)
		Fumy (1)
AG/85493/2/2	Test	This sample seemed to have a weaker taste (1)
Sulphomex 15l/ha	Test	Less hot/spicy (1)
		No peppery aftertaste (1)

Test Reference No. AG/85493/2

		Least peppery, limper texture (1)
AG/85493/1/1	Control	Tasted hotter (1)
		More bitter (1)
AG/85493/3/2	Test	More peppery, hot (1)
Hortisul 40kg/ha	Test	Hotter taste (1)
Test Reference No. AG	85493/3	
		More peppery. The others are bland compared to this sample (1)
		More aromatic (1)
AG/85493/1/1	Control	Less hot (2)
		Less bitter (1)
		Weaker, less peppery (1)
AG/85493/4/1	Test	More peppery (2)
waterstressed	1651	No Difference (1)

3.2 Stage 2 replicated trial

Samples

4 high applications (50kg/ha)		
4 low applications (30kg/ha)		
2 high applications (50kg/ha)		
2 low applications (30kg/ha)		
Water-stressed		
Control (untreated)		

3.2.1 Agronomy results

The trial was established on July 8th 2005 and the replicated trial of 15 plots were harvested on July 29th. These samples underwent chemical analysis alone.

3.2.2 Stage 2 – Replicated trial: Chemical analysis

Results presented represent chemical analysis alone as no consumer work was carried out during this stage.

Analysis of variance was carried out on all the peaks chosen for examination (Appendix 4).

Waterstress treatment

The results show that the waterstressed treatment produces a very polarised sample, with many significant differences from the remaining five samples. The following peaks were detected at significantly higher levels in the waterstressed treatment than in the other treatments.

2-Ethylfuran Hexanal cis-3-Hexenal 2-Hexenal 3-Ethylthiophene 4-Heptenal n-Heptanol 2,4-Hexadienal Methylthiocyclopentane 1-Hexanethiol 2-Heptenal 3-Ethyl-2-hydroxy-2-cyclopenten-1-one 2,6-Dimethyl-5-hepten-1-ol 2,4-Heptadienal Benzenemethanol Benzeneacetaldehyde (E)-2-Nonen-1-ol n-Pentyl isothiocyanate Carvacrol Hexyl isothiocyanate Cyclohexane methyl isothiocyanate 3-Methylhexyl isothiocyanate 4-Ethenyl-2-methoxyphenol Methylheptyl isothiocyanate

The following peaks were detected at significantly lower levels in the waterstressed treatment than in the other treatments:

cis-3-Hexenal diethyl acetal Benzeneethanol 2,2,6,6-Tetramethyl-3,5-heptanedione Methyl salicylate Ethyl nicotinate Benzenepropanenitrile 3-(Methylthio)propyl isothiocyanateEthyl hydrocinnamate94, 117, 1423-methylbutyl isothiocyanate

Peaks highlighted in bold showed the same significant difference in Trial 1. Peaks highlighted in italics showed the opposite significant difference in Trial 1. Of the eleven sulphur-containing compounds referred to in Trial 1, six were found at significantly higher levels in the waterstressed samples than in the other treatments in trial 2. Two additional sulphur-containing compounds (methylthiocyclopentane and n-pentyl isothiocyanate) were also present at significantly higher levels, and one sulphur-containing compound (3-(methylthio)propyl isothiocyanate) was present at a significantly lower level. 2-Phenylethyl isothiocyanate was again by far the largest peak detected in the watercress samples, but in this trial no significant difference was detected between the results obtained for the different treatments. The waterstressed treatment samples actually had the lowest average peak area for 2-phenylethyl isothiocyanate, while the 4 high and 4 low application treatments had the highest average peak areas.

Sulphur treatments

The level of high and low volatile compounds associated with the five treatments in the replicated Sulphur treatments trial are shown in Table 4.

Table 4 . High and low levels of volatile compounds associated with each
sample.

Treatment 2 HIGH APPLICATIONS Hortisul (2 x 50kg /ha)			
High levels	Low levels		
CIS-3-HEXENAL-DIETHYL-ACETAL	77-105 *		
2-2-6-6-TETRAMETHYL-3-5- HEPTANEDIONE	3-METHYL-3-BUTENYL-BENZENE *		
ETHYL-HYDROCINNAMATE	CYCLOHEXANE-METHYL- ISOTHIOCYANATE		
ISOAMYL-DECANOATE	ISOAMYL-DECANOATE		
Treatment 2 LOW APPLICATIONS Hortisul (2 x 30kg/ha)			
High levels	Low levels		
BENZENEPROPANENITRILE	2-ETHYLFURAN		
	TOLUENE *		
	HEXANAL		
	CIS-3-HEXENAL		
	2-HEXENAL		
	N-HEPTANOL		
	STYRENE *		

2-4-HEXADIENAL
1-HEXANETHIOL
BENZALDEHYDE *
3-METHOXYPHENOL
3-5-OCTADIEN-2-ONE
ETHYL-TRANS-4-HEPTENOATE
N-PENTYL-ISOTHIOCYANATE
1-TERPINEQI
HEXYL-ISOTHIOCYANATE
3-ETHYL-4-METHYL-IH-PYRROLE-2-5- DIONE *
3-METHYLHEXYL-ISOTHIOCYANATE
4-ETHOXYBENZALDEHYDE
METHYLHEPTYL-ISOTHIOCYANATE
GERANYL-ACETONE *
2-5-DIMETHYL-1-PHENYLPYRROLE
4 x 50kg/ha)
Low levels
2-PENTENAL
3-ETHYLTHIOPHENE
4-HEPTENAI
METHYLTHIOCYCLOPENTANE
2-HEPTENAL
2-6-DIMETHYL-5-HEPTEN-1-OL
2-4-HEPTADIENAI
2-4-HEPTADIENAL BENZENEMETHANOI
BENZENEMETHANOL
BENZENEMETHANOL 2-2-6-TRIMETHYLCYCLOHEXANONE
BENZENEMETHANOL 2-2-6-TRIMETHYLCYCLOHEXANONE CARVACROL
BENZENEMETHANOL 2-2-6-TRIMETHYLCYCLOHEXANONE CARVACROL BETA-CYCLOCITRAL
BENZENEMETHANOL 2-2-6-TRIMETHYLCYCLOHEXANONE CARVACROL BETA-CYCLOCITRAL 4-ETHENYL-2-METHOXYPHENOL
BENZENEMETHANOL 2-2-6-TRIMETHYLCYCLOHEXANONE CARVACROL BETA-CYCLOCITRAL
BENZENEMETHANOL 2-2-6-TRIMETHYLCYCLOHEXANONE CARVACROL BETA-CYCLOCITRAL 4-ETHENYL-2-METHOXYPHENOL
BENZENEMETHANOL 2-2-6-TRIMETHYLCYCLOHEXANONE CARVACROL BETA-CYCLOCITRAL 4-ETHENYL-2-METHOXYPHENOL 2 x 30kg/ha)
BENZENEMETHANOL 2-2-6-TRIMETHYLCYCLOHEXANONE CARVACROL BETA-CYCLOCITRAL 4-ETHENYL-2-METHOXYPHENOL 2 x 30kg/ha) Low levels
BENZENEMETHANOL 2-2-6-TRIMETHYLCYCLOHEXANONE CARVACROL BETA-CYCLOCITRAL 4-ETHENYL-2-METHOXYPHENOL 2 x 30kg/ha) Low levels THIACYCLOPENTANE
BENZENEMETHANOL 2-2-6-TRIMETHYLCYCLOHEXANONE CARVACROL BETA-CYCLOCITRAL 4-ETHENYL-2-METHOXYPHENOL 2 x 30kg/ha) Low levels THIACYCLOPENTANE 1-BROMOHEXANE *
BENZENEMETHANOL 2-2-6-TRIMETHYLCYCLOHEXANONE CARVACROL BETA-CYCLOCITRAL 4-ETHENYL-2-METHOXYPHENOL 2 x 30kg/ha) Low levels THIACYCLOPENTANE 1-BROMOHEXANE * 3-ETHYL-2-HYDROXY-2-CYCLOPENTEN-1-0 BENZENEACETALDEHYDE
BENZENEMETHANOL 2-2-6-TRIMETHYLCYCLOHEXANONE CARVACROL BETA-CYCLOCITRAL 4-ETHENYL-2-METHOXYPHENOL 2 x 30kg/ha) Low levels THIACYCLOPENTANE 1-BROMOHEXANE * 3-ETHYL-2-HYDROXY-2-CYCLOPENTEN-1-0
BENZENEMETHANOL 2-2-6-TRIMETHYLCYCLOHEXANONE CARVACROL BETA-CYCLOCITRAL 4-ETHENYL-2-METHOXYPHENOL 2 x 30kg/ha) Low levels THIACYCLOPENTANE 1-BROMOHEXANE * 3-ETHYL-2-HYDROXY-2-CYCLOPENTEN-1-0 BENZENEACETALDEHYDE
BENZENEMETHANOL 2-2-6-TRIMETHYLCYCLOHEXANONE CARVACROL BETA-CYCLOCITRAL 4-ETHENYL-2-METHOXYPHENOL 2 x 30kg/ha) Low levels THIACYCLOPENTANE 1-BROMOHEXANE * 3-ETHYL-2-HYDROXY-2-CYCLOPENTEN-1-O BENZENEACETALDEHYDE 2-6-NONADIENAL *
BENZENEMETHANOL 2-2-6-TRIMETHYLCYCLOHEXANONE CARVACROL BETA-CYCLOCITRAL 4-ETHENYL-2-METHOXYPHENOL 2 x 30kg/ha) Low levels THIACYCLOPENTANE 1-BROMOHEXANE * 3-ETHYL-2-HYDROXY-2-CYCLOPENTEN-1-0 BENZENEACETALDEHYDE

* Denotes non-significant results at the 10% level of significance

Results show the waterstress treatment had a large impact on the volatile content compared to the remaining samples. However, significant differences in volatile content were also observed between the remaining samples as well. In particular, within the sulphur treated samples, there appeared to be a clear indication that the 4 high and 4 low applications increased the level of PEITC, albeit not significantly. In addition to both treatments (4 high and 4 low) appearing to play a role in the increase of PEITC levels, these two samples appear to have very different chemical profiles, with each sample being characterised by a different list of chemical volatiles. It was hoped that this difference in chemical profiles would translate to a difference in flavour profile, although this could not be confirmed at this stage. These results supported the inclusion of the 4 high and 4 low applications treatments in the final validation stage of the project.

Effects of shelf-life and cooking

In addition to the six different treatments compared, Trial 2 also investigated the effects of ageing and cooking on the volatile composition of watercress. A sub-sample of the watercress from the control treatment was stored for 4 days following its initial analysis, and further samples of this watercress were then analysed, both raw and cooked. Comparing the results obtained for the control and aged samples, it was found that every peak measured had a smaller average peak area for the aged samples than for the control. Statistical analysis of these showed the following twelve peaks to be significantly lower in the aged sample than in the control (at the 10% level of significance)

Toluene Thiacyclopentane Styrene 1-Bromohexane 2,6-Nonadienal Methyl salicylate Ethyl nicotinate Cyclohexane methyl isothiocyanate 4-Ethenyl-2-methoxyphenol 3-(Methylthio)propyl isothiocyanate 94, 117, 142 2-Phenylethyl isothiocyanate Conversely, the following seven peaks were shown to be significantly lower in the control sample than in the aged sample (at the 10% level of significance):

Mixed peak of 1-penten-3-ol and 1-Penten-3-one Methylthiocyclopentane 2,6-Dimethyl-5-hepten-1-ol Octyl isothiocyanate 2,5-Dimethyl-1-phenylpyrrole Nonyl isothiocyanate Isoamyl decanoate

Comparison of the aged and cooked samples, showed even more pronounced losses of volatiles due to cooking. Statistical analysis showed forty-four peaks to be significantly lower in the cooked sample than in the aged sample. All of the isothiocyanate compounds showed significant differences at the highest level of confidence (0.1%). The average peak area of 2-phenylethyl isothiocyanate in the cooked sample was less than 1% of the peak area in the aged sample. It is clear from both these results that the ageing and cooking of watercress both have a significant reductive effect on the levels of volatiles present.

3.3 Stage 3 – Validation trial

This represented the final phase of the work whereby 3 samples were generated for consumer and chemical analysis.

Samples

4 high applications Hortisul (50kg/ha)
4 low applications Hortisul (30kg/ha)
Control

3.3.1 Validation trial -Agronomy

Plots were harvested for both chemical and sensory analysis. There were three plots in total: 4 high applications of Hortisul (50kg/ha), 4 low applications of Hortisul (30kg/ha) and a control (untreated). These were analysed by both Chemical and Consumer and Sensory Science methods.

3.3.2 Validation trial – Chemical analysis

Analysis of variance was carried out on all the peaks chosen for examination (Appendix 4).

For each treatment, the following peaks were found at significantly different levels from the other two treatments:

Treatment - ControlHigherLowern-Pentyl isothiocyanate4-Methylpentyl isothiocyanateBenzenepropanenitrile

Treatment - 4 Low applications

Higher	Lower
2-Ethylfuran	2-Phenylethyl isothiocyanate
2-Pentenal	
4-Heptenal	
Methylthiocyclopentane	
2,4-Heptadienal	
Benzenemethanol	
3,5-Octadien-2-one	
Carvacrol	
3-Ethyl-4-methyl-1H-pyrrole-2,5-	
dione	
2,5-Dimethyl-1-phenylpyrrole	

Treatment - 4 High applications

Higher	Lower
Thiacyclopentane	Hexanal
	cis-3-Hexenal
	2-Hexenal
	2,4-Hexadienal
	3-Methylbutyl isothiocyanate
	cis-3-Hexenal diethyl acetal
	4-Methylpentylisothiocyanate
	Methyl salicylate
	n-Heptyl isothiocyanate

3-Methymexyn Isothiocyanate	3-Methylhexyl isothiocyanate
-----------------------------	------------------------------

In addition to these differences, the Control sample was found to be significantly higher than the 4 High Application treatment in 2,2,6,6-tetramethyl-3,5-heptanedione and hexyl isothiocyanate.

Based on the treatments analysed for Trial 3, and bearing in mind the results obtained for trial 1, it would have been reasonable to expect to see a trend of increasing peak areas for sulphurcontaining compounds as the sulphur added to treatments increased. Therefore, such a trend would be expected to run across the samples from no extra sulphur (control), through low amounts of extra sulphur (4 low applications), to high amounts of extra sulphur (4 high applications). However, the results obtained do not appear to demonstrate such a trend. All three treatments have at least one sulphur-containing compound at significantly higher levels than in the other two treatments, and both the 4 low applications and 4 high applications treatment contain sulphur compounds at significantly lower levels than in the other two treatments.

The 4 low application treatment was found to contain significantly lower levels of 2phenylethylisothiocyanate than the other two treatments. This is inconsistent with the 'trend' witnessed in trial 2, which showed higher levels (though not significant) of 2phenylethylisothiocyanate for the 4 low application and 4 high application treatments compared to the control. As with the previous two trials, 2-phenylethyl isothiocyanate was once again by far the largest peak in all of the watercress chromatograms.

The treatment showing the greatest indication of increased sulphur levels is the control treatment, which has two sulphur-containing compounds at significantly higher levels, and none at significantly lower levels. However, these possibly increased levels are far less pronounced than the trend observed in the waterstressed and 15I/ha Hortisul treatments from trial 1. The reason for the absence of this expected trend is unknown.

3.3.3 Validation trial - Consumer acceptability

 Table 5. HEDONIC – Summary Statistics, including one way ANOVA with Newman Keuls

 calculated multiple comparison

Variable	Sample	Ν	Mean	Median	StDev	P value	Sig	NK 5%
Overall	4 x Low	111	6.8	7.0	1.49	0.609	NS	А
	4 x High	111	6.8	7.0	1.66			Α
	Control	111	6.6	7.0	1.75			А
Flavour	4 x High	111	6.7	7.0	1.68	0.615	NS	Α
	4 x Low	111	6.6	7.0	1.60			А
	Control	111	6.5	7.0	1.82			Α
Aftertaste	4 x High	111	6.3	7.0	1.72	0.324	NS	Α
	4 x Low	111	6.2	7.0	1.61			Α
	Control	111	5.9	6.0	1.81			A

Table of significance

P Value		Significance Level
≤ 0.001	0.1%	Significant at 0.1% level of significance
≤ 0.010	1%	Significant at 1% level of significance
≤ 0.050	5%	Significant at 5% level of significance
> 0.050	NS	Not significant

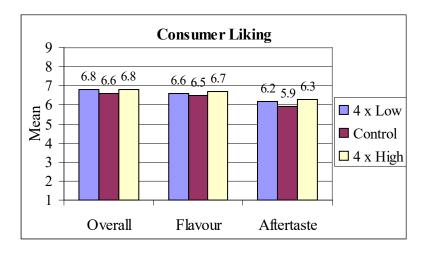
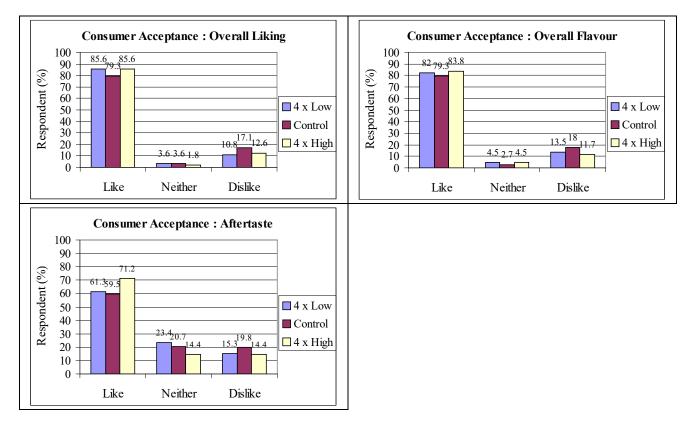
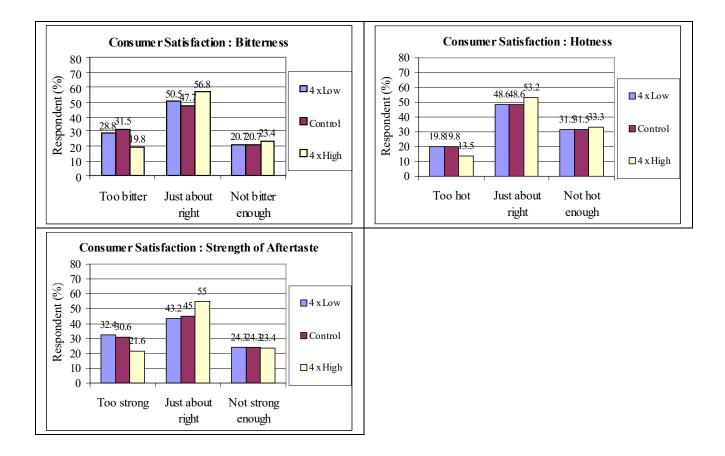



Fig. 4 Graph of consumer liking for sulphur treatments and control

Fig. 5 Hedonic – Graphs of summarised percentages


Variable	Sample	Ν	Mean	Median	StDev	P. value	Sig
Bitterness	4 x Low	111	3.1	3.0	0.84	0.313	NS
	Control	111	3.1	3.0	0.95	0.320	NS
	4 x High	111	3.0	3.0	0.81	1.000	NS
Hotness of Flavour	4 x Low	111	2.9	3.0	0.83	0.070	NS
	Control	111	2.8	3.0	0.93	0.056	NS
	4 x High	111	2.8	3.0	0.84	0.014	5%
Strength of	4 x Low						
Aftertaste		111	3.1	3.0	0.90	0.294	NS
	Control	111	3.1	3.0	0.98	0.440	NS
	4 x High	111	3.0	3.0	0.80	0.724	NS

Just About Right Summary Statistics, including T-Test (3)

Table of significance

P Value		Significance Level
≤ 0.001	0.1%	Significant at 0.1% level of significance
≤ 0.010	1%	Significant at 1% level of significance
≤ 0.050	5%	Significant at 5% level of significance
> 0.050	NS	Not significant

Fig. 6 Just about Right – Graphs of summarised percentages

No significant differences between the samples were recorded for any of the hedonic attributes. The Control sample recorded the lowest mean values across all hedonic attributes, although these slightly lower acceptability levels were not statistically significant.

For overall liking all samples recorded acceptable levels of liking, recording similar mean scores. Both the 4 x Low and 4 x High samples recorded mean scores of 6.8 with liking to some degree expressed by 86% of respondents. The Control sample recorded a slightly lower mean score of 6.6 with liking to some degree expressed by 79% of respondents.

For overall flavour all samples recorded acceptable levels of liking, recording similar mean scores of between 6.5 and 6.7. High levels of liking acceptability were recorded, with liking to some degree expressed by between 79-84% of respondents.

For aftertaste slightly lower acceptability levels were shown for all samples, with means of between 5.9 and 6.3 being recorded. Across all samples liking to some degree was expressed by between 59-71% of respondents.

None of the samples recorded particularly high levels of consumer satisfaction for the diagnostic attributes, bitterness, hotness of flavour and strength of aftertaste.

For bitterness consumer acceptability was recorded by between 48 - 57% of respondents. For all samples respondents were split fairly evenly between the sample being too bitter to some degree and not bitter enough. The Control sample recorded the lowest acceptability level for bitter, with consumer satisfaction indicated by 48%, with 31% indicating the sample to be too bitter to some degree.

For hotness of flavour all samples recorded similar values, with consumer acceptability indicated by between 49 - 53% of respondents. All samples recorded a fairly high percentage of respondents indicating the sample to be not hot enough to some degree, indicated by between 31-33% of respondents.

For strength of aftertaste all samples recorded similar values, with consumer acceptability indicated by between 43 - 55% of respondents. For all samples respondents were split fairly evenly

between the sample being too strong to some degree and not strong enough.

APPENDICES

APPENDIX 1

CONSUMER AND SENSORY DATA

Demographic Tabulations

Gender				A	ge		
		18-24	25-34	35-44	45-54	55-64	Total
Male	Count	1	3	6	8	4	22
	% of Total	0.9	2.7	5.4	7.2	3.6	19.8
Female	Count	14	9	28	21	17	89
	% of Total	12.6	8.1	25.2	18.9	15.3	80.2
Total	Count	15	12	34	29	21	111
	% of Total	13.5	10.8	30.6	26.1	18.9	100

Social C	lass			A	ge		
		18-24	25-34	35-44	45-54	55-64	Total
A/B/C1	Count	12	9	26	23	18	88
	% of Total	10.8	8.1	23.4	20.7	16.2	79.3
C2/D/E	Count	3	3	8	6	3	23
	% of Total	2.7	2.7	7.2	5.4	2.7	20.7
Total	Count	15	12	34	29	21	111
	% of Total	13.5	10.8	30.6	26.1	18.9	100

Gender		S	ocial Clas	SS
		A/B/C1	C2/D/E	Total
Male	Count	19	3	22
	% of Total	17.1	2.7	19.8
Female	Count	69	20	89
	% of Total	62.2	18.0	80.2
Total	Count	88	23	111
	% of Total	79.3	20.7	100

Purchase - counts

Have you eaten any of the following types of fresh uncooked salad leaves in the last 12 months

	Count	%
Lettuce	110	99.1
Spinach	94	84.7
Watercress	111	100
Rocket	92	82.9
Mustard and cress	69	62.2

Which of the following types of fresh uncooked salad leaves would you be willing to eat in the future

	Count	%
Lettuce	109	98.2
Spinach	99	89.2
Watercress	111	100
Rocket	95	85.6
Mustard and cress	80	72.1

Site	Count	Percent
North - Chester	55	49.5
South - Surrey	56	50.5
Total	111	100

Summarised Hedonic Counts & Percentages

Overall	Count	Count	Count		%	%	%
Sample	Like	Neither	Dislike	Mean	Like	Neither	Dislike
4 x Low	95	4	12	6.8	85.6	3.6	10.8
Control	88	4	19	6.6	79.3	3.6	17.1
4 x High	95	2	14	6.8	85.6	1.8	12.6

Flavour	Count	Count	Count		%	%	%
Sample	Like	Neither	Dislike	Mean	Like	Neither	Dislike
4 x Low	91	5	15	6.6	82.0	4.5	13.5
Control	88	3	20	6.5	79.3	2.7	18.0
4 x High	93	5	13	6.7	83.8	4.5	11.7

Aftertaste	Count	Count	Count		%	%	%
Sample	Like	Neither	Dislike	Mean	Like	Neither	Dislike
4 x Low	68	26	17	6.2	61.3	23.4	15.3
Control	66	23	22	5.9	59.5	20.7	19.8
4 x High	79	16	16	6.3	71.2	14.4	14.4

Sample Assessment Tabulations – Full Tabulations

Hedonic – Full Counts

Overall	4 x Low	Control	4 x High	4 x Low	Control	4 x High
	Count	Count	Count	Percent	Percent	Percent
Like extremely	6	7	5	5.4	6.3	4.5
Like very much	32	31	37	28.8	27.9	33.3
Like moderately	39	34	37	35.1	30.6	33.3
Like slightly	18	16	16	16.2	14.4	14.4
Neither like or dislike	4	4	2	3.6	3.6	1.8
Dislike slightly	7	14	9	6.3	12.6	8.1
Dislike moderately	3	1	1	2.7	0.9	0.9
Dislike very much	2	2	1	1.8	1.8	0.9
Dislike extremely	0	2	3	0.0	1.8	2.7
Total	111	111	111	100	100	100

Flavour	4 x Low	Control	4 x High	4 x Low	Control	4 x High
	Count	Count	Count	Percent	Percent	Percent
Like extremely	6	5	5	5.4	4.5	4.5
Like very much	30	34	35	27.0	30.6	31.5
Like moderately	38	29	37	34.2	26.1	33.3
Like slightly	17	20	16	15.3	18.0	14.4
Neither like or dislike	5	3	5	4.5	2.7	4.5
Dislike slightly	9	13	7	8.1	11.7	6.3
Dislike moderately	3	2	2	2.7	1.8	1.8
Dislike very much	3	2	1	2.7	1.8	0.9
Dislike extremely	0	3	3	0.0	2.7	2.7
Total	111	111	111	100	100	100

Aftertaste	4 x Low	Control	4 x High	4 x Low	Control	4 x High
	Count	Count	Count	Percent	Percent	Percent
Like extremely	3	3	3	2.7	2.7	2.7
Like very much	23	19	26	20.7	17.1	23.4
Like moderately	30	31	32	27.0	27.9	28.8
Like slightly	12	13	18	10.8	11.7	16.2
Neither like or dislike	26	23	16	23.4	20.7	14.4
Dislike slightly	12	13	10	10.8	11.7	9.0
Dislike moderately	2	3	1	1.8	2.7	0.9
Dislike very much	3	3	2	2.7	2.7	1.8
Dislike extremely	0	3	3	0.0	2.7	2.7
Total	111	111	111	100	100	100

Just about Right - Summar	rised Counts & percentages
---------------------------	----------------------------

Bitterness	4 x Low	Control	4 x High	4 x Low	Control	4 x High
	Count	Count	Count	Percent	Percent	Percent
Too bitter	32	35	22	28.8	31.5	19.8
Just about right	56	53	63	50.5	47.7	56.8
Not bitter enough	23	23	26	20.7	20.7	23.4
Total	111	111	111	100	100	100

Hotness of Flavour	4 x Low	Control	4 x High	4 x Low	Control	4 x High
	Count	Count	Count	Percent	Percent	Percent
Too hot	22	22	15	19.8	19.8	13.5
Just about right	54	54	59	48.6	48.6	53.2
Not hot enough	35	35	37	31.5	31.5	33.3
Total	111	111	111	100	100	100

Strength of Aftertaste	4 x Low	Control	4 x High	4 x Low	Control	4 x High
	Count	Count	Count	Percent	Percent	Percent
Too strong	36	34	24	32.4	30.6	21.6
Just about right	48	50	61	43.2	45.0	55.0
Not strong enough	27	27	26	24.3	24.3	23.4
Total	111	111	111	100	100	100

Just about Right – Full Counts

Bitterness	4 x Low	Control	4 x High	4 x Low	Control	4 x High
	Count	Count	Count	Percent	Percent	Percent
Much too bitter	4	6	6	3.6	5.4	5.4
A little too bitter	28	29	16	25.2	26.1	14.4
Just about right	56	53	63	50.5	47.7	56.8
Not quite bitter enough	19	15	24	17.1	13.5	21.6
Not at all bitter enough	4	8	2	3.6	7.2	1.8
Total	111	111	111	100	100	100

Hotness of Flavour	4 x Low	Control	4 x High	4 x Low	Control	4 x High
	Count	Count	Count	Percent	Percent	Percent
Much too hot	2	4	5	1.8	3.6	4.5
A little too hot	20	18	10	18.0	16.2	9.0
Just about right	54	54	59	48.6	48.6	53.2
Not quite hot enough	30	25	32	27.0	22.5	28.8
Not at all hot enough	5	10	5	4.5	9.0	4.5
Total	111	111	111	100	100	100

Strength of Aftertaste	4 x Low	Control	4 x High	4 x Low	Control	4 x High
------------------------	---------	---------	----------	---------	---------	----------

	Count	Count	Count	Percent	Percent	Percent
Much too strong	5	8	3	4.5	7.2	2.7
A little too strong	31	26	21	27.9	23.4	18.9
Just about right	48	50	61	43.2	45.0	55.0
A little too mild	23	20	22	20.7	18.0	19.8
Much too mild	4	7	4	3.6	6.3	3.6
Total	111	111	111	100	100	100

Cross Tabulations

Demographics V Hedonic Acceptability

			Social Grade				Gender			
		A/B/C1		C2/D/E		Male		Female		
	Sample	Mean	Median	Mean	Median	Mean	Median	Mean	Median	
Overall	4 x Low	6.8	7.0	6.7	7.0	6.7	7.0	6.8	7.0	
	Control	6.6	7.0	6.5	7.0	6.5	7.0	6.6	7.0	
	4 x High	6.8	7.0	6.5	7.0	6.6	7.0	6.8	7.0	
Flavour	4 x Low	6.7	7.0	6.3	7.0	6.5	7.0	6.7	7.0	
	Control	6.5	7.0	6.4	7.0	6.3	6.5	6.5	7.0	
	4 x High	6.8	7.0	6.5	7.0	6.6	7.0	6.7	7.0	
Aftertaste	4 x Low	6.2	6.0	6.1	7.0	5.9	6.0	6.2	7.0	
	Control	5.9	6.0	5.9	7.0	5.8	6.0	6.0	6.0	
	4 x High	6.3	7.0	6.1	7.0	6.0	6.0	6.3	7.0	
	Count	88		23		22		89		

						A	ge				
		18-24y		25-34y		35-44y		45-54y		55-64y	
	Sample	Mean	Media								
			n		n		n		n		n
Overall	4 x Low	6.7	7.0	7.0	7.0	6.6	7.0	7.0	7.0	6.7	7.0
	Control	6.6	7.0	6.7	7.0	6.1	6.0	6.9	7.0	7.0	7.0
	4 x High	6.9	7.0	6.8	7.5	6.5	7.0	7.0	7.0	6.7	7.0
Flavour	4 x Low	6.3	6.0	6.9	7.0	6.6	7.0	6.8	7.0	6.6	7.0
	Control	6.2	6.0	6.9	8.0	5.9	6.0	6.8	7.0	7.0	7.0
	4 x High	6.6	7.0	6.8	7.5	6.5	7.0	6.8	7.0	6.9	7.0
Aftertast e	4 x Low	5.7	5.0	6.3	7.0	6.0	6.0	6.3	7.0	6.3	7.0
	Control	5.5	5.0	5.8	6.0	5.3	5.0	6.7	7.0	6.3	7.0
	4 x High	6.6	7.0	6.6	7.0	5.7	6.0	6.6	7.0	6.4	7.0
	Count	15		12		34		29		21	

Site Tasting Order

		No	orth	So	uth	Taste	ed 1st	Taste	d 2nd	Taste	ed 3rd
	Sample	Mean	Media	Mean	Media	Mean	Media	Mean	Media	Mean	Media
			n		n		n		n		n
Overall	4 x Low	6.9	7.0	6.7	7.0	7.2	7.5	6.7	7.0	6.4	7.0
	Control	6.8	7.0	6.4	7.0	7.1	7.0	6.2	7.0	6.4	7.0
	4 x High	6.5	7.0	7.0	7.0	7.0	7.0	6.7	7.0	6.6	7.0
Flavour	4 x Low	6.7	7.0	6.6	7.0	7.2	7.0	6.6	7.0	6.2	6.0
	Control	6.7	7.0	6.3	7.0	7.1	8.0	6.1	7.0	6.4	7.0
	4 x High	6.5	7.0	6.9	7.0	6.8	7.0	6.7	7.0	6.6	7.0
Aftertast e	4 x Low	6.1	6.0	6.2	7.0	6.4	7.0	6.3	7.0	5.8	6.0
	Control	6.3	7.0	5.6	6.0	6.3	7.0	5.8	6.5	5.7	6.0
	4 x High	6.1	7.0	6.4	7.0	6.4	7.0	6.0	6.0	6.4	7.0
	Count	55		56		36	-38	36	-38	36	-38

Appendix 2

Chemistry stage 1

Attrs	Sample	Mean	Stdev	PVal	Sig	Groupi ngs (NK at
1-PENTEN-3-OL / 1-	SULPHOMEX	79838	31563		0.10	
PENTEN-3-ONE 1-PENTEN-3-OL / 1-	(5L/HA) UNTREATED	66214		j	%	AB
PENTEN-3-ONE 1-PENTEN-3-OL / 1- PENTEN-3-ONE	HORTISUL (5L/HA)	51554.7	64 3237.7 22	,		AB
1-PENTEN-3-ONE PENTEN-3-ONE	SULPHOMEX (15L/HA)	46260				В
1-PENTEN-3-ONE / 1- PENTEN-3-ONE	WATERSTRESSED	12889) 1020.1 g			С
1-PENTEN-3-ONE / 1- PENTEN-3-ONE	HORTISUL (15L/HA) 10039				С
2-ETHYLFURAN	WATERSTRESSED	14676.7	991.03		0.10 %	
2-ETHYLFURAN	HORTISUL (15L/HA) 10543.3			70	B
2-ETHYLFURAN	UNTREATED	9894.7				В
2-ETHYLFURAN	SULPHOMEX (5L/HA)	9223.3				В
2-ETHYLFURAN	SULPHOMEX (15L/HA)	6952.3	524.04 8			С
2-ETHYLFURAN	HORTISUL (5L/HA)	6524.7	-	6		С
77, 105	SULPHOMEX (15L/HA)	57872.7		0.149	NS	
77, 105	HORTISUL (15L/HA) 57208				
77, 105	WATERSTRESSED	56885	-			
77, 105	SULPHOMEX (5L/HA)	53983.7		,		
77, 105	UNTREATED	52113	2345.5 76			
77, 105	HORTISUL (5L/HA)	50198.3	6457.4 35			
2-PENTENAL	SULPHOMEX (5L/HA)	21095.3	9882.8 26	0.002	2 1%	Α
2-PENTENAL	UNTRÉATED	15881.7	4200.6 94	;		AB
2-PENTENAL	HORTISUL (5L/HA)	10915.3	1379.5 88	5		BC
2-PENTENAL	SULPHOMEX (15L/HA)	8751.3	569.35 4	5		BC
2-PENTENAL	WATERSTRESSED	3989.7	' 890.51 7			С

2-PENTENAL	HORTISUL (15L/HA)	3003.3	520.56 C
TOLUENE	HORTISUL (15L/HA)	7326	2 523.76 0.11 NS
TOLUENE	WATERSTRESSED	6401	8 492.39 4
TOLUENE	SULPHOMEX	5938	58.275
TOLUENE	(15L/HA) HORTISUL (5L/HA)	5800.3	534.00 8
TOLUENE	UNTREATED	5288.7	1106.3 51
TOLUENE	SULPHOMEX (5L/HA)	4927.3	1898.5 03
HEXANAL	WATERSTRESSED	15980.3	5413.8 0.001 0.10 A 98 %
HEXANAL	HORTISUL (15L/HA)	6725.7	
HEXANAL	UNTREATED	5835.3	-
HEXANAL	SULPHOMEX (5L/HA)	5558.3	1123.1 B 46
HEXANAL	SULPHOMEX (15L/HA)	5198.3	1186.0 B 09
HEXANAL	HORTISUL (5L/HA)	4505.3	
THIACYCLOPENTANE THIACYCLOPENTANE	WATERSTRESSED SULPHOMEX (15L/HA)		80.208 0.558 NS 85.563
THIACYCLOPENTANE THIACYCLOPENTANE THIACYCLOPENTANE	HORTISUL (5L/HA) HORTISUL (15L/HA) SULPHOMEX	191	39.95 26.514 108.89
THIACYCLOPENTANE CIS-3-HEXENAL	(5L/HA) UNTREATED WATERSTRESSED		4 38.501 225.95 <0.00 0.10 A 2 1 %
CIS-3-HEXENAL		1534.7	627.76 B
CIS-3-HEXENAL	(5L/HA) UNTREATED	1363	311.46 B
CIS-3-HEXENAL	HORTISUL (5L/HA)	1287.7	7 155.06 B 9
CIS-3-HEXENAL	SULPHOMEX (15L/HA)	915.7	99.219 B
CIS-3-HEXENAL	HORTISUL (15L/HA)	882.3	267.29 B
2-HEXENAL	WATERSTRESSED	307283.7	39591. <0.00 0.10 A 6 1 %
2-HEXENAL		112139.7	70063. B
2-HEXENAL	(5L/HA) UNTREATED	75555.7	9 24792. B 69
2-HEXENAL	HORTISUL (5L/HA)	69617.3	
2-HEXENAL	HORTISUL (15L/HA)	53721	

			06		
2-HEXENAL	SULPHOMEX (15L/HA)	36778.7	06 4484.2 88		В
3-ETHYLTHIOPHENE	WATERSTRESSED	2588	179.51 9		0.10 A %
3-ETHYLTHIOPHENE 3-ETHYLTHIOPHENE	HORTISUL (15L/HA) HORTISUL (5L/HA)		62.554 30.892	1	B C
3-ETHYLTHIOPHENE	SULPHOMEX (5L/HA)		34.122		C
3-ETHYLTHIOPHENE	UNTRÉATED		29.28		C C
3-ETHYLTHIOPHENE	SULPHOMEX (15L/HA)		15.144		-
4-HEPTENAL	SULPHOMEX (5L/HA)	378.7		0.003	1% A
4-HEPTENAL 4-HEPTENAL	UNTREATED SULPHOMEX	292.7 232.7			AB BC
	(15L/HA)	232.1	30.734		BC
4-HEPTENAL	HORTISUL (5L/HA)	232.3	52.205		BC
4-HEPTENAL	HORTISUL (15L/HA)	177.7			BC
4-HEPTENAL	WATERSTRESSED		69.867		С
N-HEPTANOL	WATERSTRESSED		97.516	0.011	5% A
N-HEPTANOL	HORTISUL (15L/HA)	576	171.76 4		AB
N-HEPTANOL	HORTISUL (5L/HA)	416.7			В
N-HEPTANOL	SULPHOMEX (5L/HA)	394.7	60.699		В
N-HEPTANOL	UNTREATED	384 7	56.048		В
N-HEPTANOL	SULPHOMEX		10.408		B
STYRENE	(15L/HA) WATERSTRESSED	26069.7	7047.7	0 070	NC
STILLINE	WATERSTRESSED	20009.7	14	0.079	INO
STYRENE	HORTISUL (15L/HA)	23920	3225.5 31		
STYRENE	UNTREATED	20237.7	2434.3 79		
STYRENE	SULPHOMEX (5L/HA)	20032.7			
STYRENE	SULPHOMEX	17946.3	3170.4		
STYRENE	(15L/HA) HORTISUL (5L/HA)	17158.3	46 1768.5 12		
2,4-HEXADIENAL	SULPHOMEX (5L/HA)	9818.3	4583.6 8	0.052	NS
2,4-HEXADIENAL	WATERSTRESSED	8785.3			
2,4-HEXADIENAL	UNTREATED	8134.3	2177.0 33		
2,4-HEXADIENAL	HORTISUL (5L/HA)	6579.3	477		
2,4-HEXADIENAL	SULPHOMEX (15L/HA)		263.18 1		
2,4-HEXADIENAL	HORTISUL (15L/HA)	4484	910.57 8		
	WATERSTRESSED	254.3	60.863	0.025	5% A
ANE METHYLTHIOCYCLOPENT	HORTISUL (5L/HA)	220	95.645		AB

SULPHOMEX				
	210.3	65.919		AB
	164.3	50.639		AB
UNTREATED	83.7	77.501		AB
	65.7	39.068		В
WATERSTRESSED HORTISUL (15L/HA) HORTISUL (5L/HA) SULPHOMEX	86 31.7	33.151 32.532	0.002	1% A A B B
SULPHOMEX	5.7	9.815		В
(15L/HA) UNTREATED HORTISUL (15L/HA)	0 85302.7		0.002	B 1% A
WATERSTRESSED	77972.7	2743.9		А
	40393.7	3923.3		В
HORTISUL (5L/HA)	40238.3	8036.4		В
UNTREATED	36708.7	13188.		В
	35542	29350.		В
SULPHOMEX	3619.7	1789.0	0.012	5% A
UNTREATED	3249	1217.4		А
SULPHOMEX	2179.3	613.90		AB
HORTISUL (5L/HA) WATERSTRESSED		532.83 403.92		AB B
HORTISUL (15L/HA) SULPHOMEX (5L/HA)		70.868 279.78	0.001	B 0.10 A %
UNTREATED	874.7	-		AB
WATERSTRESSED	792.7	56.959		AB
HORTISUL (5L/HA)	647	47.791		AB
SULPHOMEX	592	65.506		В
HORTISUL (15L/HA)	325.7	30.039		С
WATERSTRESSED	31061.3		0.025	5% A
UNTREATED	26985	3692.8 5		AB
	 I (15L/HA) HORTISUL (15L/HA) I UNTREATED SULPHOMEX (5L/HA) WATERSTRESSED HORTISUL (15L/HA) HORTISUL (5L/HA) SULPHOMEX (15L/HA) UNTREATED HORTISUL (15L/HA) WATERSTRESSED SULPHOMEX (15L/HA) HORTISUL (5L/HA) UNTREATED SULPHOMEX (5L/HA) HORTISUL (5L/HA) UNTREATED SULPHOMEX (5L/HA) UNTREATED SULPHOMEX (5L/HA) UNTREATED SULPHOMEX (5L/HA) UNTREATED SULPHOMEX (5L/HA) UNTREATED SULPHOMEX (5L/HA) UNTREATED SULPHOMEX (15L/HA) HORTISUL (5L/HA) WATERSTRESSED HORTISUL (5L/HA) UNTREATED WATERSTRESSED HORTISUL (5L/HA) WATERSTRESSED WATERSTRESSED WATERSTRESSED WATERSTRESSED 	(15L/HA) 164.3 I UNTREATED 83.7 SULPHOMEX 65.7 (5L/HA) 100.3 HORTISUL (15L/HA) 86 HORTISUL (15L/HA) 86 HORTISUL (5L/HA) 31.7 SULPHOMEX 24.7 (5L/HA) 24.7 SULPHOMEX 5.7 (15L/HA) 85302.7 WATERSTRESSED 1003 HORTISUL (15L/HA) 85302.7 WATERSTRESSED 77972.7 SULPHOMEX 40393.7 (15L/HA) 40238.3 UNTREATED 36708.7 SULPHOMEX 35542 (5L/HA) 3619.7 SULPHOMEX 3619.7 (5L/HA) 3249 SULPHOMEX 3249 SULPHOMEX 1949.7 WATERSTRESSED 917 HORTISUL (5L/HA) 1949.7 WATERSTRESSED 917 HORTISUL (5L/HA) 931.3 (5L/HA) 917.7 WATERSTRESSED 792.7 HORTISUL (5L/HA) 647 WATERSTRES	(15L/HA) 164.3 50.639 I UNTREATED 83.7 77.501 SULPHOMEX 65.7 39.068 (5L/HA) 86.57 39.068 WATERSTRESSED 100.3 6.658 HORTISUL (15L/HA) 86 33.151 HORTISUL (5L/HA) 31.7 32.532 SULPHOMEX 24.7 42.724 (5L/HA) 5.7 9.815 (15L/HA) 0 0 UNTREATED 0 0 HORTISUL (15L/HA) 85302.7 6756.6 34 WATERSTRESSED 77972.7 2743.9 SULPHOMEX 40393.7 3923.3 (15L/HA) 40238.3 8036.4 2 UNTREATED 36708.7 13188. 01 SULPHOMEX 35542 29350. (5L/HA) 4 SULPHOMEX 3619.7 1789.0 11 UNTREATED 3249 1217.4 98 SULPHOMEX 2179.3 613.90 (15L/HA) 7 UNTREATED 3249 1217.4 98 98	(15L/HA) 164.3 50.639 I HORTISUL (15L/HA) 164.3 50.639 I UNTREATED 83.7 77.501 I SULPHOMEX 65.7 39.068 (5L/HA) 86 33.151 HORTISUL (15L/HA) 86 33.151 HORTISUL (5L/HA) 31.7 32.532 SULPHOMEX 24.7 42.724 (5L/HA) 31.7 32.532 SULPHOMEX 5.7 9.815 (15L/HA) 0 0 NORTISUL (15L/HA) 85302.7 6756.6 0.002 WATERSTRESED 77972.7 2743.9 82 SULPHOMEX 40393.7 3923.3 11 (15L/HA) 40238.3 8036.4 2 UNTREATED 36708.7 13188. 01 SULPHOMEX 35542 29350. 11 (5L/HA) 11 11 11 UNTREATED 3249 1217.4 SULPHOMEX 2179.3 613.90 152.43 (5L/HA) 1949.7 532.83 24.74 WATERST

BENZALDEHYDE	SULPHOMEX	26972	2299.9	AB
BENZALDEHYDE	(5L/HA) HORTISUL (5L/HA)	26738.3	72 1291.1	AB
BENZALDEHYDE	SULPHOMEX	25179.3	05 1834.4	AB
BENZALDEHYDE	(15L/HA) HORTISUL (15L/HA)	21614.7		В
2,6-DIMETHYL-5-HEPTEN- 1-OL	SULPHOMEX (5L/HA)	22350.7	1 16808. 19	0.078 NS
2,6-DIMETHYL-5-HEPTEN- 1-OL		19924.3	6779.3 16	
2,6-DIMETHYL-5-HEPTEN- 1-OL	HORTISUL (5L/HA)	17484.3	3762.0 86	
2,6-DIMETHYL-5-HEPTEN- 1-OL	SULPHOMEX (15L/HA)	13709.3	2612.3 2	
2,6-DIMETHYL-5-HEPTEN- 1-OL		10417	2 1504.1 39	
2,6-DIMETHYL-5-HEPTEN- 1-OL	HORTISUL (15L/HA)	2606	728.43 5	
2,4-HEPTADIENAL	SULPHOMEX (5L/HA)	86063.3		0.001 0.10 A %
2,4-HEPTADIENAL	UNTREATED	73612	16056. 08	AB
2,4-HEPTADIENAL	HORTISUL (5L/HA)	60948.7	4607.9 51	AB
2,4-HEPTADIENAL	SULPHOMEX (15L/HA)	51181.3	1575.7 41	BC
2,4-HEPTADIENAL	WATERSTRESSED	29065.7	3289.5 89	С
2,4-HEPTADIENAL	HORTISUL (15L/HA)	22961	3009.3 41	С
BENZENEMETHANOL	SULPHOMEX (5L/HA)	1768	559.95 4	
BENZENEMETHANOL	UNTREATED	1566.3	329.36 7	AB
BENZENEMETHANOL	HORTISUL (5L/HA)	1340	168.32	AB
BENZENEMETHANOL	SULPHOMEX (15L/HA)	1065.3	63.129	В
BENZENEMETHANOL	WATERSTRESSED	534.3	135.07 9	С
BENZENEMETHANOL	HORTISUL (15L/HA)	405.3	107.77 9	С
3-METHOXYPHENOL	SULPHOMEX (5L/HA)	1762.7	703.43 2	0.025 5% A
3-METHOXYPHENOL	UNTREATED	1374.7		AB
3-METHOXYPHENOL 3-METHOXYPHENOL	HORTISUL (5L/HA) HORTISUL (15L/HA)	1308 1218.3	154.7 171.79 7	AB AB
3-METHOXYPHENOL	SULPHOMEX	865.7	7 139.73 3	В
3-METHOXYPHENOL 2,2,6-	(15L/HA) WATERSTRESSED WATERSTRESSED		67.515	B 0.069 NS

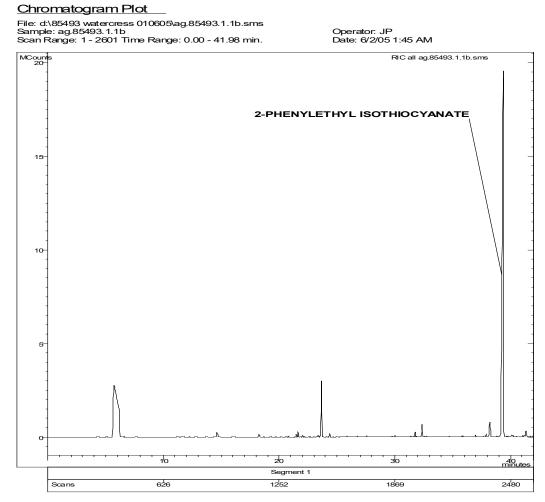
TRIMETHYLCYCLOHEXAN ONE					
2,2,6- TRIMETHYLCYCLOHEXAN	SULPHOMEX (5L/HA)	2837	938.10 2		
ONE 2,2,6- TRIMETHYLCYCLOHEXAN	HORTISUL (15L/HA)	2732.7	130.31 6		
ONE 2,2,6- TRIMETHYLCYCLOHEXAN	UNTREATED	2334.3	337.36 4		
ONE 2,2,6- TRIMETHYLCYCLOHEXAN	HORTISUL (5L/HA)	2321	19.975		
ONE 2,2,6-	SULPHOMEX	1778 7	330.53		
TRIMETHYLCYCLOHEXAN		1770.7	3		
BENZENEACETALDEHYD	WATERSTRESSED	25696.7	4914.6 9	0.143	NS
BENZENEACETALDEHYD E	HORTISUL (15L/HA)	22951	4003.1 98		
E BENZENEACETALDEHYD	SULPHOMEX (5L/HA)	20450.7	1682.1 72		
E BENZENEACETALDEHYD E	SULPHOMEX (15L/HA)	20206.7			
E BENZENEACETALDEHYD E		19576.7	2121.7 17		
E BENZENEACETALDEHYD E	HORTISUL (5L/HA)	18244	1789.2 15		
- 3-METHYLBUTYL ISOTHIOCYANATE	WATERSTRESSED	7628.3			0.10 A %
3-METHYLBUTYL ISOTHIOCYANATE	HORTISUL (15L/HA)	3436	-		В
3-METHYLBUTYL ISOTHIOCYANATE	SULPHOMEX (15L/HA)	2163.7			С
3-METHYLBUTYL ISOTHIOCYANATE	HORTISUL (5L/HA)	2014.3	86.234		С
3-METHYLBUTYL ISOTHIOCYANATE	SULPHOMEX (5L/HA)	1924.7	755.32 9		С
3-METHYLBUTYL ISOTHIOCYANATE	UNTRÉATED	1919.7			С
3,5-OCTADIEN-2-ONE 3,5-OCTADIEN-2-ONE	UNTREATED SULPHOMEX		94.384 1290.0	0.002	1% A A
3,5-OCTADIEN-2-ONE	(5L/HA) HORTISUL (5L/HA)	1955.3	92		AB
3,5-OCTADIEN-2-ONE	SULPHOMEX	1275.7	8 116.92		В
3,5-OCTADIEN-2-ONE	(15L/HA) HORTISUL (15L/HA)	874.3	142.00		В
3,5-OCTADIEN-2-ONE	WATERSTRESSED		1 73.921	0.002	B
CIS-3-HEXENAL DIETHYL ACETAL CIS-3-HEXENAL DIETHYL	SULPHOMEX (5L/HA) WATERSTRESSED	13595.3 13190	5063.5 7 1690.5	0.003	1% A A
ACETAL			4		

CIS-3-HEXENAL DIETHYL ACETAL	UNTREATED	12361.7	1522.8 2		А
CIS-3-HEXENAL DIETHYL ACETAL	HORTISUL (5L/HA)	8902	273.08 4		AB
CIS-3-HEXENAL DIETHYL	SULPHOMEX	8768.3	861.42		AB
ACETAL CIS-3-HEXENAL DIETHYL	(15L/HA) HORTISUL (15L/HA)	4490.3	7 215.28		В
ACETAL ETHYL-TRANS-4- HEPTENOATE	HORTISUL (15L/HA)	5265.7	2 699.80 2	0.007	1% A
ETHYL-TRANS-4- HEPTENOATE	SULPHOMEX (5L/HA)	3710.3	1396.2 01		В
ETHYL-TRANS-4- HEPTENOATE	WATERSTRESSED	3451.7			В
ETHYL-TRANS-4- HEPTENOATE	UNTREATED	2849.3	605.93		В
ETHYL-TRANS-4- HEPTENOATE	HORTISUL (5L/HA)	2688.3	4 300.76		В
ETHYL-TRANS-4- HEPTENOATE		2260	359.58		В
(E)-2-NONEN-1-OL	(15L/HA) WATERSTRESSED	5943		0.285 1	NS
(E)-2-NONEN-1-OL	HORTISUL (15L/HA)	5558.7	6 661.10		
(E)-2-NONEN-1-OL	UNTREATED	5378.3	2 739.55		
(E)-2-NONEN-1-OL	SULPHOMEX	5212.7	4 1397.6		
(E)-2-NONEN-1-OL	(5L/HA) HORTISUL (5L/HA)	4848.3	04 361.71		
(E)-2-NONEN-1-OL	SULPHOMEX (15L/HA)	4498.7	9 200.56 5		
N-PENTYL ISOTHIOCYANATE	HORTISUL (15L/HA)	8749.7	1296.9 32	0.903 1	١S
N-PENTYL ISOTHIOCYANATE	UNTREATED	8521.3			
N-PENTYL	SULPHOMEX	8346.7	2881.4		
ISOTHIOCYANATE N-PENTYL	(5L/HA) WATERSTRESSED	8226.7	92 1033.5		
ISOTHIOCYANATE N-PENTYL	HORTISUL (5L/HA)	7820.3	66 392.70		
ISOTHIOCYANATE N-PENTYL	SULPHOMEX	7347			
ISOTHIOCYANATE CARVACROL	(15L/HA) SULPHOMEX	894.7	1 28.746	0.003	1% A
	(5L/HA)	0.40.0	440.40		
CARVACROL CARVACROL	UNTREATED HORTISUL (5L/HA)		110.12 154.26 9		AB BC
CARVACROL	HORTISUL (15L/HA)	656	79.228		BC
CARVACROL	WATERSTRESSED		19.672		C
CARVACROL	SULPHOMEX		58.404		Č
1-TERPINEOL	(15L/HA) SULPHOMEX		245.92	0.016	5% A
	(5L/HA)		9		

1-TERPINEOL 1-TERPINEOL 1-TERPINEOL 1-TERPINEOL 1-TERPINEOL	HORTISUL (5L/HA) UNTREATED HORTISUL (15L/HA) WATERSTRESSED SULPHOMEX (15L/HA)	434.3 329.7	23.431 85.002 48.563 27.465 36.166	AB AB B B B
BENZENEETHANOL	HORTISUL (5L/HA)	10007	264.05 <0.00 1 1	0.10 A %
BENZENEETHANOL	WATERSTRESSED	8246	1676.8 21	В
BENZENEETHANOL	HORTISUL (15L/HA)	7134.3		В
BENZENEETHANOL	SULPHOMEX (15L/HA)	5190	550.61 3	С
BENZENEETHANOL	SULPHOMEX (5L/HA)	3889.7	470.03 1	С
BENZENEETHANOL	UNTREATED	3883	725.97 6	С
2,2,6,6-TETRAMETHYL- 3,5-HEPTANEDIONE	WATERSTRESSED	2785	210.94 <0.00 1 1	0.10 A %
2,2,6,6-TETRAMETHYL- 3,5-HEPTANEDIONE	HORTISUL (5L/HA)	1441	70.064	В
2,2,6,6-TETRAMETHYL- 3,5-HEPTANEDIONE	UNTREATED	1282.3	221.34 2	В
2,2,6,6-TETRAMETHYL- 3,5-HEPTANEDIONE	SULPHOMEX (15L/HA)	1183	77.698	В
2,2,6,6-TETRAMETHYL- 3,5-HEPTANEDIONE	SULPHÓMEX (5L/HA)	1132.7	164.44 6	В
2,2,6,6-TETRAMETHYL- 3,5-HEPTANEDIONE	HORTISUL (15L/HA)	620	20	С
2,6-NONADIENAL	SULPHOMEX (5L/HA)	2427.7	213.93 <0.00 1 1	0.10 A %
2,6-NONADIENAL	ÙNTRÉATED	2259.7	260.62 5	А
2,6-NONADIENAL	HORTISUL (5L/HA)	2254	176.55 3	А
2,6-NONADIENAL	HORTISUL (15L/HA)	2193.3	181.75 1	А
2,6-NONADIENAL	SULPHOMEX (15L/HA)	1945	79.956	А
2,6-NONADIENAL	WATERSTRESSED	1331.7	196.04 2	В
4-METHYLPENTYL ISOTHIOCYANATE	WATERSTRESSED	31219	2114.8 <0.00 8 1	0.10 A %
4-METHYLPENTYL ISOTHIOCYANATE	HORTISUL (15L/HA)	16767	873.37 1	В
4-METHYLPENTYL ISOTHIOCYANATE	SULPHOMEX (15L/HA)	7582	1008.9 85	С
4-METHYLPENTYL ISOTHIOCYANATE	SULPHOMEX (5L/HA)	7524.3	2798.5 93	С
4-METHYLPENTYL ISOTHIOCYANATE	HORTISUL (5L/HA)	6746.3	216.48 4	С
4-METHYLPENTYL ISOTHIOCYANATE	UNTREATED	6279.3	890.57 9	С
HEXYL ISOTHIOCYANATE	WATERSTRESSED	4121.3	147.03 < 0.00	0.10 A

			9 1	%
HEXYL ISOTHIOCYANATE	HORTISUL (15L/HA)	3238.3	487.10 4	B
HEXYL ISOTHIOCYANATE	HORTISUL (5L/HA)	2246.3	378.36 5	С
HEXYL ISOTHIOCYANATE	UNTREATED	2034.3		С
HEXYL ISOTHIOCYANATE	SULPHOMEX (5L/HA)	1923	397.43	С
HEXYL ISOTHIOCYANATE		1833	578.81 2	С
METHYL SALICYLATE	WATERSTRESSED	9416.3		0.10 A %
METHYL SALICYLATE	SULPHOMEX (5L/HA)	6593	388.15 3	B
METHYL SALICYLATE	HORTISUL (5L/HA)	6324.7	344.01 5	В
METHYL SALICYLATE	HORTISUL (15L/HA)	5941.3	240.43 4	В
METHYL SALICYLATE		5824.7	•	В
METHYL SALICYLATE	(15L/HA) UNTREATED	5677.7	1003.3	В
ETHYL NICOTINATE	UNTREATED	25353	74 8054.3 0.028	8 5% A
ETHYL NICOTINATE		22181.7		А
ETHYL NICOTINATE	(5L/HA) HORTISUL (5L/HA)	21420.7	14 7301.0 27	А
ETHYL NICOTINATE		17989.3	37 8361.8 71	А
ETHYL NICOTINATE	(15L/HA) HORTISUL (15L/HA)	8475	71 2548.8	А
ETHYL NICOTINATE	WATERSTRESSED	7006	85 3975.3 96	А
3-ETHYL-4-METHYL-1H- PYRROLE-2,5-DIONE	UNTREATED	22324.3	90 2685.6 <0.00 58 1	0.10 A %
3-ETHYL-4-METHYL-1H- PYRROLE-2,5-DIONE		10141.7		B
3-ETHYL-4-METHYL-1H- PYRROLE-2,5-DIONE	(15L/HA) SULPHOMEX	9725.3	4264.4 51	В
3-ETHYL-4-METHYL-1H-	(5L/HA) HORTISUL (5L/HA)	8825.7	2927.3	В
PYRROLE-2,5-DIONE 3-ETHYL-4-METHYL-1H-	HORTISUL (15L/HA)	2312.3	57 168.71 7	С
PYRROLE-2,5-DIONE 3-ETHYL-4-METHYL-1H-	WATERSTRESSED	2242.7		С
PYRROLE-2,5-DIONE (3-METHYL-3-	WATERSTRESSED	686041.3		3 NS
BUTENYL)BENZENE (3-METHYL-3-	HORTISUL (15L/HA)	527764	.2 103430	
BUTENYL)BENZENE (3-METHYL-3-	UNTREATED	368193.7	.1 74596.	
BUTENYL)BENZENE (3-METHYL-3- BUTENYL)BENZENE	SULPHOMEX (5L/HA)	365689	28 45417. 01	

(3-METHYL-3- BUTENYL)BENZENE (3-METHYL-3-	SULPHOMEX (15L/HA) HORTISUL (5L/HA)		137750 .6 45614.	
BUTENYL)BENZENE BETA-CYCLOCITRAL	SULPHOMEX	13116.3	89 3963.7 0.023	5% A
BETA-CYCLOCITRAL	(5L/HA) UNTREATED	10820.3		AB
BETA-CYCLOCITRAL	HORTISUL (5L/HA)	9392	83 348.90 1	AB
BETA-CYCLOCITRAL	HORTISUL (15L/HA)	8713	492.68 5	AB
BETA-CYCLOCITRAL BETA-CYCLOCITRAL	WATERSTRESSED SULPHOMEX (15L/HA)	8393.7 7059.7	-	AB B
BENZENEPROPANENITRI LE	HORTISUL (5L/HA)	554047.7		5% A
BENZENEPROPANENITRI LE	UNTREATED	464492.3		AB
BENZENEPROPANENITRI LE	SULPHOMEX (15L/HA)	449646.3		AB
BENZENEPROPANENITRI LE	SULPHOMEX (5L/HA)	244644	45505. 45	AB
BENZENEPROPANENITRI LE		189831.3	2445.7 38	AB
BENZENEPROPANENITRI LE	HORTISUL (15L/HA)	83270	4018.9 66	В
3-ETHENYL-4-METHYL-1H- PYRROLE-2,5-DIONE	UNTREATED	16867.3	1577.2 <0.00 04 1	0.10 A %
3-ETHENYL-4-METHYL-1H- PYRROLE-2,5-DIONE	SULPHOMEX (5L/HA)	8010.7		В
3-ETHENYL-4-METHYL-1H- PYRROLE-2,5-DIONE	SULPHOMEX	7621.3		В
3-ETHENYL-4-METHYL-1H- PYRROLE-2,5-DIONE		6720	2163.0 3	В
3-ETHENYL-4-METHYL-1H- PYRROLE-2,5-DIONE	HORTISUL (15L/HA)	2424	71.106	С
3-ETHENYL-4-METHYL-1H- PYRROLE-2,5-DIONE	WATERSTRESSED	2098	558.58 7	С
N-HEPTYL ISOTHIOCYANATE	WATERSTRESSED	68499	3362.3 <0.00 92 1	0.10 A %
N-HEPTYL ISOTHIOCYANATE	HORTISUL (15L/HA)	39315.7	1580.5 52	В
N-HEPTYL ISOTHIOCYANATE	SULPHOMEX (15L/HA)	22524.3		С
N-HEPTYL ISOTHIOCYANATE	HORTISUL (5L/HA)	21150.7	1180.0 14	С
N-HEPTYL ISOTHIOCYANATE	SULPHOMEX (5L/HA)	20963.7	6094.6 57	С
N-HEPTYL ISOTHIOCYANATE	UNTREATED	18553.3	1179.2 49	С
CYCLOHEXANE METHYL ISOTHIOCYANATE	WATERSTRESSED	18577.7	45 1544.9 <0.00 66 1	0.10 A %
CYCLOHEXANE METHYL ISOTHIOCYANATE	HORTISUL (15L/HA)	11059.7		В


CYCLOHEXANE METHYL		8315.3	1195.1	BC
ISOTHIOCYANATE CYCLOHEXANE METHYL	(15L/HA) HORTISUL (5L/HA)	7778.7	34 656.33	BC
ISOTHIOCYANATE CYCLOHEXANE METHYL	UNTREATED	5737	2 462.70	С
ISOTHIOCYANATE			1	
CYCLOHEXANE METHYL ISOTHIOCYANATE	SULPHOMEX (5L/HA)	4758	4700.1 11	С
3-METHYLHEXYL ISOTHIOCYANATE	WATERSTRESSED	5847.7	430.01 <0.00 7 1	0.10 A %
3-METHYLHEXYL	HORTISUL (15L/HA)	3883	291.15	В
ISOTHIOCYANATE 3-METHYLHEXYL	SULPHOMEX	2476	1 681.47	С
ISOTHIOCYANATE 3-METHYLHEXYL	(5L/HA) SULPHOMEX	2411.3	197.56	С
ISOTHIOCYANATE	(15L/HA)	-	9	-
3-METHYLHEXYL ISOTHIOCYANATE	HORTISUL (5L/HA)	2321.7	113.77 8	С
3-METHYLHEXYL	UNTREATED	2195.3	250.01	С
ISOTHIOCYANATE 4-ETHENYL-2-	SULPHOMEX	4198	1 581.70 0.067	NS
METHOXYPHENOL 4-ETHENYL-2-	(5L/HA) UNTREATED	3809.3	2 814.65	
METHOXYPHENOL	UNIREATED	3009.3	7	
4-ETHENYL-2- METHOXYPHENOL	SULPHOMEX (15L/HA)	3715.3	342.20 7	
4-ETHENYL-2-	WATERSTRESSED	3254	399.18	
METHOXYPHENOL 4-ETHENYL-2-	HORTISUL (5L/HA)	3111.3	4 377.15	
METHOXYPHENOL 4-ETHENYL-2-	HORTISUL (15L/HA)	2950.3	6 226.32	
METHOXYPHENOL	, , , , , , , , , , , , , , , , , , ,		1	
4- ETHOXYBENZALDEHYDE	UNTREATED	2155.7	376.06 <0.00 4 1	0.10 A %
4-	SULPHOMEX	1651.3	571.00	AB
ETHOXYBENZALDEHYDE 4-	(5L/HA) SULPHOMEX	1215.3	5 178.08	В
ETHOXYBENZALDEHYDE 4-	(15L/HA) HORTISUL (5L/HA)	1174	256 72	В
ETHOXYBENZALDEHYDE	HOR HOUL (SL/HA)	1174	356.73 7	
4- ETHOXYBENZALDEHYDE	WATERSTRESSED	282.3	89.79	С
4-	HORTISUL (15L/HA)	85.3	79.387	С
ETHOXYBENZALDEHYDE 3-(METHYLTHIO)PROPYL	WATERSTRESSED	4410.3	567.02 < 0.00	0.10 A
ISOTHIOCYANATE 3-(METHYLTHIO)PROPYL	HORTISUL (15L/HA)	3026	9 1 287.09	% B
ISÒTHIOCYANATE			8	
3-(METHYLTHIO)PROPYL ISOTHIOCYANATE	SULPHOMEX (15L/HA)	2721.7	638.32 1	BC
3-(METHYLTHIO)PROPYL	HORTISUL (5L/HA)	2245.3	290.97	BC
ISOTHIOCYANATE 3-(METHYLTHIO)PROPYL	SULPHOMEX	1648.3	5 918.15	С
ISOTHIOCYANATE	(5L/HA) UNTREATED	1105	1 313.51	С
3-(METHYLTHIO)PROPYL	UNIKEALED	1423	515.51	C

ISOTHIOCYANATE 94, 117, 142	WATERSTRESSED	3099.7	7 912.36 0.009	1% A
94, 117, 142	SULPHOMEX	2135.3	7 398.61	AB
94, 117, 142	(15L/HA) HORTISUL (5L/HA)	2091	1 356.25	AB
94, 117, 142	HORTISUL (15L/HA)	1438	7 275.10 2	В
94, 117, 142	UNTREATED	1255.7	571.77 5	В
94, 117, 142	SULPHOMEX (5L/HA)	1054.3	655.21 6	В
ETHYL HYDROCINNAMATE	UNTREATED	11010.7	0 1187.5 <0.00 92 1	0.10 A %
ETHYL HYDROCINNAMATE	SULPHOMEX (5L/HA)	7696.7	2322.2 7	В
ETHYL HYDROCINNAMATE	SULPHOMEX (15L/HA)	6238.7	3257.4 15	В
ETHYL HYDROCINNAMATE	HORTISUL (5L/HA)	6090.7	1709.2 71	В
ETHYL HYDROCINNAMATE	WATERSTRESSED	1350.3	355.39 5	С
ETHYL HYDROCINNAMATE	HORTISUL (15L/HA)	535.7		С
OCTYL ISOTHIOCYANATE	WATERSTRESSED	35607.7	1988.5 <0.00 64 1	0.10 A %
OCTYL ISOTHIOCYANATE	HORTISUL (15L/HA)	22895	335.54 1	В
OCTYL ISOTHIOCYANATE	SULPHOMEX (15L/HA)	11728.3	1056.7 64	С
OCTYL ISOTHIOCYANATE	· · · ·	11629.3	3042.5 56	С
OCTYL ISOTHIOCYANATE	· · · ·	9826	599.42 3	С
OCTYL ISOTHIOCYANATE	UNTREATED	8358	590.54 3	С
METHYLHEPTYL ISOTHIOCYANATE	WATERSTRESSED	6003		0.10 A %
METHYLHEPTYL ISOTHIOCYANATE	HORTISUL (15L/HA)	4405.3	204.79 3	В
METHYLHEPTYL ISOTHIOCYANATE	SULPHOMEX (5L/HA)	2762.3	714.43 5	С
METHYLHEPTYL ISOTHIOCYANATE	SULPHOMEX (15L/HA)	2555.3	175.74 2	С
METHYLHEPTYL ISOTHIOCYANATE	HORTISUL (5L/HA)	2366.3	207.85 2	С
METHYLHEPTYL ISOTHIOCYANATE	UNTREATED	2168.3	126.80 8	С
GERANYL ACETONE	UNTREATED	19972.3	7122.3 0.124	NS
GERANYL ACETONE	SULPHOMEX (5L/HA)	16241.3	95 6445.5 14	
GERANYL ACETONE	HORTISUL (15L/HA)	12155.3		

GERANYL ACETONE	HORTISUL (5L/HA)	11461.7	3663.9	
GERVITE/GETONE		11101.7	25	
GERANYL ACETONE	SULPHOMEX (15L/HA)	11344.7	4620.3 68	
GERANYL ACETONE	WATERSTRESSED	6912.7	1528.1 98	
2,5-DIMETHYL-1- PHENYLPYRROLE	UNTREATED	8988	2008.8 0.001 86	0.10 A %
2,5-DIMETHYL-1-	SULPHOMEX	8452.3	1615.7	Â
PHENYLPYRROLE 2,5-DIMETHYL-1- PHENYLPYRROLE	(5L/HA) HORTISUL (5L/HA)	7335	87 1599.0 74	А
2,5-DIMETHYL-1- PHENYLPYRROLE	SULPHOMEX (15L/HA)	6647	2147.2 93	А
2,5-DIMETHYL-1- PHENYLPYRROLE	WATERSTRESSED	2941	1296.9 82	В
2,5-DIMETHYL-1-	HORTISUL (15L/HA)	2581.3	561.60	В
PHENYLPYRROLE NONYL ISOTHIOCYANATE	WATERSTRESSED	6429.3	2 195.98 <0.00	0.10 A
NONYL ISOTHIOCYANATE	HORTISUL (15L/HA)	4114.7	6 1 178.35 2	% B
NONYL ISOTHIOCYANATE	SULPHOMEX (15L/HA)	2033.3	75.976	С
NONYL ISOTHIOCYANATE		1982.7	617.51 1	С
NONYL ISOTHIOCYANATE	· · · ·	1552.7	176.41	С
NONYL ISOTHIOCYANATE	UNTREATED	1372.7	5 186.35	С
ISOAMYL DECANOATE	UNTREATED	191416.7	40900. <0.00 32 1	0.10 A %
ISOAMYL DECANOATE	HORTISUL (15L/HA)	148374.7	8116.9 99	В
ISOAMYL DECANOATE	WATERSTRESSED	131784	10986. 94	BC
ISOAMYL DECANOATE	SULPHOMEX (5L/HA)	99390.3	27140. 47	С
ISOAMYL DECANOATE	HORTISUL (5L/HA)	87690.3	7270.8 26	С
ISOAMYL DECANOATE	SULPHOMEX (15L/HA)	80948.7	5858.5 27	С
2-PHENYLETHYL ISOTHIOCYANATE	WATERSTRESSED	92690189	242987 <0.00 9 1	0.10 A %
2-PHENYLETHYL ISOTHIOCYANATE	HORTISUL (15L/HA)	82634539		В
2-PHENYLETHYL	SULPHOMEX	58208380	137937	С
ISOTHIOCYANATE 2-PHENYLETHYL	(5L/HA) SULPHOMEX	53710541		CD
ISOTHIOCYANATE 2-PHENYLETHYL	(15L/HA) UNTREATED	53078163	8 764636	CD
ISOTHIOCYANATE 2-PHENYLETHYL	HORTISUL (5L/HA)	47482351	3 126114	D
ISOTHIOCYANATE			2	2

APPENDIX 3

CHEMICAL ANALYSIS FROM STAGE 2

Typical Watercress Chromatogram

Chemical analysis (results from trial 2)

ANOVA results

2-way ANOVA (Sample & Analysis Group, Full factorial)

		N
Sampname	2HighAppl	8
	2LowAppl	8
	4HighAppl	9
	4LowAppl	7
	Contrl	8
	Waterstr	3
Analysis	1	12
Group		
	2	12
	3	12
	4	7

Attribute/Volatile	SampleName (p-value)
1-PENTEN-3-OL / 1-PENTEN-3-ONE	0.001
2-ETHYLFURAN	0.000
77, 105	0.360
2-PENTENAL	0.000
TOLUENE	0.277
HEXANAL	0.000
THIACYCLOPENTANE	0.008
CIS-3-HEXENAL	0.000
2-HEXENAL	0.000
3-ETHYLTHIOPHENE	0.000
4-HEPTENAL	0.000
N-HEPTANOL	0.001
STYRENE	0.212
2,4-HEXADIENAL	0.000
METHYLTHIOCYCLOPENTANE	0.000
1-HEXANETHIOL	0.002
1-BROMOHEXANE	0.306
2-HEPTENAL	0.000
3-ETHYL-2-HYDROXY-2-CYCLOPENTEN-1-	0.000
ONE	
BENZALDEHYDE	0.197
2,6-DIMETHYL-5-HEPTEN-1-OL	0.000
2,4-HEPTADIENAL	0.000
BENZENEMETHANOL	0.000
3-METHOXYPHENOL	0.030

	0.005
	0.005
	0.000
3-METHYLBUTYL ISOTHIOCYANATE	0.058
3 5-OCTADIEN-2-ONE	0.006
CIS-3-HEXENAL DIETHYL ACETAL	0.000
ETHYL-TRANS-4-HEPTENOATE	0.001
(E)-2-NONEN-1-OL	0.010
N-PENTYL ISOTHIOCYANATE	0.000
CARVACROL	0.000
1-TERPINEOL	0.019
BENZENEETHANOL	0.000
2,2,6,6-TETRAMETHYL-3 5-	0.000
HEPTANEDIONE	
2 6-NONADIENAL	0.656
4-METHYLPENTYL ISOTHIOCYANATE	0.174
HEXYL ISOTHIOCYANATE	0.000
METHYL SALICYLATE	0.000
ETHYL NICOTINATE	0.051
3-ETHYL-4-METHYL-IH-PYRROLE-2,5-	0.121
DIONE	
(3-METHYL-3-BUTENYL)BENZENE	0.380
BETA-CYCLOCITRAL	0.001
BENZENEPROPANENITRILE	0.000
3-ETHENYL-4-METHYL-1H-PYRROLE-2,5-	0.078
DIONE	
N-HEPTYL ISOTHIOCYANATE	0.213
CYCLOHEXANE METHYL	0.000
ISOTHIOCYANATE	
3-METHYLHEXYL ISOTHIOCYANATE	0.000
4-ETHENYL-2-METHOXYPHENOL	0.000
4-ETHOXYBENZALDEHYDE	0.036
3-(METHYLTHIO)PROPYL	0.000
ISOTHIOCYANATE	
94, 117, 142	0.000
ETHYL HYDROCINNAMATE	0.000
OCTYL ISOTHIOCYANATE	0.192
METHYLHEPTYL ISOTHIOCYANATE	0.000
GERANYL ACETONE	0.917
2,5-DIMETHYL-1-PHENYLPYRROLE	0.001
NONYL ISOTHIOCYANATE	0.159
ISOAMYL DECANOATE	0.045
2-PHENYLETHYLISOTHOICYANATE	0.167

NK at 10% - Chemistry data Trial 2 Groupings (NK at 10%)

1-PENTEN-3-OL / 1-PENTEN-3-ONE

SampleName

4 LOW APPLICATIONS	410492 a
CONTROL	362018 a
2 LOW APPLICATIONS	247455 b
2 HIGH	195904 b
APPLICATIONS 4 HIGH	160487 b
APPLICATIONS	100407 0
WATERSTRESSED	151143 b
2-ETHYLFURAN	
SampleName	
WATERSTRESSED 4 LOW	431429 a 231962 b
APPLICATIONS	231902 D
CONTROL	139673 c
2 HIGH APPLICATIONS	111920 c
4 HIGH	68756 c
APPLICATIONS	
2 LOW APPLICATIONS	56730 c
77, 105	
SampleName	
WATERSTRESSED	45960 NSD
2 LOW	34315 NSD
APPLICATIONS 4 HIGH	32148 NSD
APPLICATIONS	021401100
4 LOW	28887 NSD

4 LOW28887 NSDAPPLICATIONS24145 NSDCONTROL24145 NSD2 HIGH18843 NSDAPPLICATIONS24145 NSD

2-PENTENAL

SampleName

WATERSTRESSED 4 LOW APPLICATIONS CONTROL 2 LOW APPLICATIONS 2 HIGH APPLICATIONS 4 HIGH APPLICATIONS	166184 a 150954 a 134882 a 75590 b 74341 b 60180 b
TOLUENE	
SampleName	
WATERSTRESSED 4 HIGH APPLICATIONS CONTROL	83525 NSD 50528 NSD 48941 NSD
4 LOW APPLICATIONS	45330 NSD
2 HIGH APPLICATIONS	44222 NSD
2 LOW APPLICATIONS	43113 NSD
HEXANAL	
HEXANAL SampleName	
	279409 a 126590 b
SampleName WATERSTRESSED 4 LOW	
SampleName WATERSTRESSED 4 LOW APPLICATIONS 2 HIGH	126590 b
SampleName WATERSTRESSED 4 LOW APPLICATIONS 2 HIGH APPLICATIONS 4 HIGH	126590 b 93389 bc
SampleName WATERSTRESSED 4 LOW APPLICATIONS 2 HIGH APPLICATIONS 4 HIGH APPLICATIONS CONTROL 2 LOW	126590 b 93389 bc 88842 bc 87745 bc
SampleName WATERSTRESSED 4 LOW APPLICATIONS 2 HIGH APPLICATIONS 4 HIGH APPLICATIONS CONTROL 2 LOW APPLICATIONS	126590 b 93389 bc 88842 bc 87745 bc
SampleName WATERSTRESSED 4 LOW APPLICATIONS 2 HIGH APPLICATIONS 4 HIGH APPLICATIONS CONTROL 2 LOW APPLICATIONS THIACYCLOPENTANE SampleName 4 HIGH	126590 b 93389 bc 88842 bc 87745 bc
SampleName WATERSTRESSED 4 LOW APPLICATIONS 2 HIGH APPLICATIONS 4 HIGH APPLICATIONS CONTROL 2 LOW APPLICATIONS THIACYCLOPENTANE SampleName	126590 b 93389 bc 88842 bc 87745 bc 56331 c

APPLICATIONS CONTROL 4 LOW APPLICATIONS	2423 bc 2094 c
CIS-3-HEXENAL	
SampleName	Λ
WATERSTRESSED 4 LOW APPLICATIONS CONTROL 4 HIGH APPLICATIONS 2 HIGH APPLICATIONS 2 LOW APPLICATIONS	4 53132 a 25806 b 22808 bc 17181 cd 16851 cd 12780 d
2-HEXENAL	
SampleName WATERSTRESSED 4 LOW APPLICATIONS CONTROL 2 HIGH APPLICATIONS 4 HIGH APPLICATIONS 2 LOW APPLICATIONS	6399151 a 2401564 b 1889730 bc 1204892 c 1095717 c 680225 c
3-ETHYLTHIOPHENE SampleName	
WATERSTRESSED 4 LOW APPLICATIONS CONTROL 2 HIGH APPLICATIONS 2 LOW APPLICATIONS 4 HIGH	4 22134 a 13374 b 10740 c 8163 d 7656 d 6680 d
APPLICATIONS	

4-HEPTENAL

SampleName

WATERSTRESSED	4597 a
4 LOW	3282 b
APPLICATIONS	
CONTROL	2427 c
2 HIGH	2049 c
APPLICATIONS	
2 LOW	1537 c
APPLICATIONS	
4 HIGH	1493 c
APPLICATIONS	

N-HEPTANOL

SampleName

WATERSTRESSED 4 LOW	6753 a 4244 b
APPLICATIONS	4244 D
4 HIGH	3603 b
APPLICATIONS 2 HIGH	3544 b
APPLICATIONS	
CONTROL	3307 b
2 LOW	2675 b
APPLICATIONS	

STYRENE

SampleName

WATERSTRESSED	316180 NSD
4 HIGH	244060 NSD
APPLICATIONS	
4 LOW	234306 NSD
APPLICATIONS	
CONTROL	225626 NSD
2 HIGH	222040 NSD
APPLICATIONS	
2 LOW	217864 NSD
APPLICATIONS	

2,4-HEXADIENAL

SampleName

	4
WATERSTRESSED	241586 a
4 LOW	133116 b
APPLICATIONS	
CONTROL	107531 bc

2 HIGH APPLICATIONS 4 HIGH APPLICATIONS 2 LOW APPLICATIONS	84210 cd 77240 cd 57403 d
METHYLTHIOCYCLO PENTANE	
SampleName	
WATERSTRESSED 4 LOW APPLICATIONS	9109 a 4716 b
CONTROL 2 LOW APPLICATIONS	4229 bc 4057 bc
2 HIGH APPLICATIONS	3549 bc
4 HIGH APPLICATIONS	3249 c
1-HEXANETHIOL	
SampleName	
WATERSTRESSED CONTROL 4 HIGH APPLICATIONS 2 HIGH APPLICATIONS 4 LOW APPLICATIONS 2 LOW APPLICATIONS	2859 a 1644 b 1589 b 1457 b 1296 b 1267 b
1-BROMOHEXANE	
SampleName	
WATERSTRESSED 4 HIGH APPLICATIONS	2753800 NSD 1749631 NSD
CONTROL 2 HIGH	1727153 NSD 1600898 NSD
APPLICATIONS 2 LOW	1475196 NSD
APPLICATIONS 4 LOW APPLICATIONS	1382051 NSD

2-HEPTENAL

SampleName

WATERSTRESSED	28204 a
4 LOW	21756 b
APPLICATIONS	
CONTROL	18222 b
2 HIGH	12389 c
APPLICATIONS	
2 LOW	11342 c
APPLICATIONS	
4 HIGH	10889 c
APPLICATIONS	

3-ETHYL-2-HYDROXY-2-CYCLOPENTEN-1-ONE

SampleName

WATERSTRESSED	2756 a
2 HIGH	1611 b
APPLICATIONS	
4 HIGH	1405 bc
APPLICATIONS	
CONTROL	1404 bc
2 LOW	1078 c
APPLICATIONS	
4 LOW	1067 c
APPLICATIONS	

BENZALDEHYDE

SampleName

4 HIGH	324731 NSD
APPLICATIONS	
4 LOW	313787 NSD
APPLICATIONS	
CONTROL	300233 NSD
WATERSTRESSED	299040 NSD
2 HIGH	298196 NSD
APPLICATIONS	
2 LOW	274043 NSD
APPLICATIONS	

2,6-DIMETHYL-5-HEPTEN-1-OL

SampleName

WATERSTRESSED 4 LOW APPLICATIONS CONTROL 2 LOW APPLICATIONS 2 HIGH APPLICATIONS 4 HIGH APPLICATIONS	381287 a 92784 b 78521 b 44698 c 35151 c 29284 c
2,4-HEPTADIENAL	
SampleName	
WATERSTRESSED 4 LOW APPLICATIONS	693072 a 571621 b
CONTROL 2 LOW APPLICATIONS	534120 b 383747 c
2 HIGH APPLICATIONS	357538 c
4 HIGH APPLICATIONS	337979 c
BENZENEMETHANOL	
SampleName	
WATERSTRESSED 4 LOW APPLICATIONS	17697 a 10645 b
CONTROL 2 LOW	10293 b 7411 c
APPLICATIONS 2 HIGH	7126 c
APPLICATIONS 4 HIGH APPLICATIONS	6688 c
3-METHOXYPHENOL	
SampleName	
WATERSTRESSED 4 LOW	10061 a 8878 a
APPLICATIONS 2 HIGH	7148 ab
APPLICATIONS CONTROL	7106 ab

4 HIGH	7099 ab
APPLICATIONS	
2 LOW	4769 b
APPLICATIONS	

2,2,6-

TRIMETHYLCYCLOHEXANONE

SampleName

4 LOW APPLICATIONS	21002 a
CONTROL	17536 b
2 HIGH	16942 bc
APPLICATIONS	
2 LOW	15685 bc
APPLICATIONS	
WATERSTRESSED	13307 c
4 HIGH	13091 c
APPLICATIONS	

BENZENEACETALDE HYDE

SampleName

WATERSTRESSED	393228 a
4 HIGH	197880 b
APPLICATIONS	
CONTROL	188420 b
2 HIGH	188230 b
APPLICATIONS	
2 LOW	174460 b
APPLICATIONS	
4 LOW	164662 b
APPLICATIONS	

3-METHYLBUTYL ISOTHIOCYANATE

SampleName

4 LOW	106849 a
APPLICATIONS 4 HIGH	97506 a
APPLICATIONS CONTROL	97106 a
2 HIGH	94754 a
APPLICATIONS 2 LOW	87684 a
APPLICATIONS WATERSTRESSED	64114 b

3 5-OCTADIEN-2-ONE

SampleName

WATERSTRESSED	10466 a
4 LOW	10159 a
APPLICATIONS	
CONTROL	7849 ab
2 HIGH	6274 b
APPLICATIONS	
4 HIGH	5744 b
APPLICATIONS	
2 LOW	5022 b
APPLICATIONS	

CIS-3-HEXENAL DIETHYL ACETAL

SampleName

2 HIGH APPLICATIONS	24458 a
CONTROL	20059 ab
4 HIGH	18952 ab
APPLICATIONS	
4 LOW	17091 b
APPLICATIONS	
2 LOW	16475 b
APPLICATIONS	
WATERSTRESSED	9341 c

ETHYL-TRANS-4-HEPTENOATE

SampleName

4 LOW	18254 a
APPLICATIONS	
2 HIGH	16659 ab
APPLICATIONS	
CONTROL	13326 abc
4 HIGH	12488 abc
APPLICATIONS	
WATERSTRESSED	10553 bc
2 LOW	8523 c
APPLICATIONS	

(E)-2-NONEN-1-OL

SampleName

WATERSTRESSED 2 HIGH APPLICATIONS 4 HIGH APPLICATIONS 2 LOW APPLICATIONS 4 LOW APPLICATIONS CONTROL	33534 a 24511 b 22743 b 20838 b 20592 b 19707 b
N-PENTYL ISOTHIOCYANATE	
SampleName	
WATERSTRESSED 4 LOW	38123 a 24755 b
APPLICATIONS CONTROL 4 HIGH APPLICATIONS	24301 b 22862 bc
2 HIGH APPLICATIONS	20980 bc
2 LOW APPLICATIONS	19660 c
CARVACROL	
CARVACROL SampleName	
SampleName WATERSTRESSED 4 LOW	8354 a 5992 b
SampleName WATERSTRESSED 4 LOW APPLICATIONS CONTROL 2 HIGH	
SampleName WATERSTRESSED 4 LOW APPLICATIONS CONTROL 2 HIGH APPLICATIONS 2 LOW	5992 b 4889 b
SampleName WATERSTRESSED 4 LOW APPLICATIONS CONTROL 2 HIGH APPLICATIONS	5992 b 4889 b 3378 c
SampleName WATERSTRESSED 4 LOW APPLICATIONS CONTROL 2 HIGH APPLICATIONS 2 LOW APPLICATIONS 4 HIGH	5992 b 4889 b 3378 c 2905 c
SampleName WATERSTRESSED 4 LOW APPLICATIONS CONTROL 2 HIGH APPLICATIONS 2 LOW APPLICATIONS 4 HIGH APPLICATIONS	5992 b 4889 b 3378 c 2905 c
SampleName WATERSTRESSED 4 LOW APPLICATIONS CONTROL 2 HIGH APPLICATIONS 2 LOW APPLICATIONS 4 HIGH APPLICATIONS 1-TERPINEOL SampleName 4 LOW	5992 b 4889 b 3378 c 2905 c
SampleName WATERSTRESSED 4 LOW APPLICATIONS CONTROL 2 HIGH APPLICATIONS 2 LOW APPLICATIONS 4 HIGH APPLICATIONS 1-TERPINEOL SampleName	5992 b 4889 b 3378 c 2905 c 2830 c

4 HIGH APPLICATIONS 2 LOW APPLICATIONS	1775 b 1718 b
BENZENEETHANOL	
SampleName	
4 HIGH APPLICATIONS CONTROL 2 LOW APPLICATIONS 2 HIGH APPLICATIONS 4 LOW APPLICATIONS WATERSTRESSED	74544 a 61636 a 57887 a 56943 a 55211 a 22941 b
2,2,6,6-TETRAMETHYL-3 5- HEPTANEDIONE	
SampleName	4
2 HIGH APPLICATIONS 4 HIGH APPLICATIONS CONTROL 2 LOW APPLICATIONS 4 LOW APPLICATIONS WATERSTRESSED	5026 a 4512 ab 3684 bc 3458 bc 3196 c 1639 d
2 6-NONADIENAL	
SampleName	
WATERSTRESSED 2 HIGH APPLICATIONS CONTROL 4 HIGH APPLICATIONS 2 LOW APPLICATIONS 4 LOW APPLICATIONS	24627 NSD 21155 NSD 20754 NSD 20440 NSD 20290 NSD 20199 NSD

4-METHYLPENTYL ISOTHIOCYANATE

SampleName

4 LOW	321046 NSD
APPLICATIONS	
2 HIGH	298803 NSD
APPLICATIONS	
4 HIGH	294070 NSD
APPLICATIONS	
CONTROL	286677 NSD
2 LOW	262695 NSD
APPLICATIONS	
WATERSTRESSED	210277 NSD

HEXYL

ISOTHIOCYANATE

SampleName

WATERSTRESSED CONTROL 4 HIGH	62091 a 42474 b 42144 b
APPLICATIONS	404041
4 LOW APPLICATIONS	42134 b
2 HIGH	38131 b
APPLICATIONS 2 LOW APPLICATIONS	36458 b

METHYL SALICYLATE

SampleName

4 HIGH APPLICATIONS	163231 a
CONTROL	158454 ab
4 LOW	150034 b
APPLICATIONS	
2 LOW	149011 b
APPLICATIONS	
2 HIGH	145416 b
APPLICATIONS WATERSTRESSED	102331 c
WATERSTRESSED	1023310

ETHYL NICOTINATE

SampleName

CONTROL

37057 a

35960 a
35301 a
34777 a
33387 a
4982 b

3-ETHYL-4-METHYL-IH-PYRROLE-2,5-DIONE

SampleName

4 LOW	71790 NSD
APPLICATIONS	
CONTROL	63822 NSD
2 HIGH	49910 NSD
APPLICATIONS	
4 HIGH	45885 NSD
APPLICATIONS	
WATERSTRESSED	41019 NSD
2 LOW	39150 NSD
APPLICATIONS	

(3-METHYL-3-BUTENYL)BENZENE

SampleName

WATERSTRESSED	7374699 NSD
4 HIGH	4792071 NSD
APPLICATIONS	
CONTROL	4548250 NSD
4 LOW	4166786 NSD
APPLICATIONS	
2 LOW	3982812 NSD
APPLICATIONS	
2 HIGH	3981588 NSD
APPLICATIONS	

BETA-CYCLOCITRAL

SampleName

4 LOW	74041 a
APPLICATIONS	
WATERSTRESSED	60264 ab
CONTROL	60229 ab
2 HIGH	51840 bc
APPLICATIONS	
2 LOW	45589 bc

APPLICATIONS 4 HIGH APPLICATIONS	41802 c
BENZENEPROPANEN ITRILE	
SampleName	
2 LOW APPLICATIONS 2 HIGH APPLICATIONS	3221418 a 3098780 a
CONTROL 4 HIGH APPLICATIONS 4 LOW	2571337 ab 2401654 ab
	1827214 b
APPLICATIONS WATERSTRESSED	835720 c
3-ETHENYL-4-METHYL-11 PYRROLE-2,5-DIONE	4-
SampleName	
4 LOW APPLICATIONS	73781 a
CONTROL 2 HIGH	62630 ab 52770 ab
APPLICATIONS 4 HIGH	44257 b
APPLICATIONS 2 LOW	38249 b
APPLICATIONS WATERSTRESSED	35941 b
N-HEPTYL ISOTHIOCYANATE	
SampleName	
4 LOW APPLICATIONS	561870 NSD
4 HIGH APPLICATIONS	536648 NSD
CONTROL 2 HIGH APPLICATIONS	528376 NSD 513222 NSD
2 LOW	467113 NSD
APPLICATIONS WATERSTRESSED	457986 NSD

CYCLOHEXANE METHYL ISOTHIOCYANATE

SampleName

WATERSTRESSED 4 HIGH	197157 a 175935 b
APPLICATIONS 4 LOW	168369 b
APPLICATIONS	
CONTROL 2 LOW	167344 b 148744 c
APPLICATIONS	
2 HIGH APPLICATIONS	146926 c

3-METHYLHEXYL ISOTHIOCYANATE

SampleName

WATERSTRESSED	63312 a
CONTROL	49927 b
4 LOW	49826 b
APPLICATIONS	
4 HIGH	49288 b
APPLICATIONS	
2 HIGH	45319 bc
APPLICATIONS	
2 LOW	41798 c
APPLICATIONS	

4-ETHENYL-2-METHOXYPHENOL

SampleName

WATERSTRESSED CONTROL 4 LOW	93208 a 51991 b 47744 b
APPLICATIONS	4//44 D
2 LOW	44204 b
APPLICATIONS	
2 HIGH	43031 b
APPLICATIONS	40000
4 HIGH	42003 b
APPLICATIONS	

4-ETHOXYBENZALDEH YDE

SampleName

4 LOW APPLICATIONS CONTROL 2 HIGH	9483 a 8589 a 5472 a
APPLICATIONS 4 HIGH APPLICATIONS	5006 a
WATERSTRESSED 2 LOW APPLICATIONS	4572 a 4204 a
3-(METHYLTHIO)PROPYL ISOTHIOCYANATE	
SampleName	
4 HIGH APPLICATIONS	72461 a
2 LOW APPLICATIONS 2 HIGH APPLICATIONS CONTROL 4 LOW	69207 a
	69168 a
	63333 ab 54935 b
APPLICATIONS WATERSTRESSED	38517 c
94, 117, 142	
SampleName	4
4 HIGH APPLICATIONS	4 44619 a
2 HIGH APPLICATIONS	37893 ab
2 LOW APPLICATIONS	35602 abc
APPLICATIONS CONTROL 4 LOW	31230 bc 26785 c
APPLICATIONS WATERSTRESSED	17958 d
ETHYL	

HYDROCINNAMATE

SampleName

2 HIGH APPLICATIONS 11345 a

CONTROL 2 LOW APPLICATIONS	11216 a 10478 a
4 HIGH APPLICATIONS	6673 b
4 LOW APPLICATIONS	5514 b
WATERSTRESSED	2688 c
OCTYL ISOTHIOCYANATE	
SampleName	
4 LOW APPLICATIONS CONTROL 2 HIGH	281527 NSD
	265944 NSD 260363 NSD
APPLICATIONS 4 HIGH	256872 NSD
APPLICATIONS 2 LOW APPLICATIONS	223553 NSD
WATERSTRESSED	215002 NSD
METHYLHEPTYL ISOTHIOCYANATE	
SampleName	
WATERSTRESSED CONTROL 4 LOW	52925 a 40521 b 39737 b
APPLICATIONS 4 HIGH APPLICATIONS	39431 b
2 HIGH	35812 bc
APPLICATIONS 2 LOW APPLICATIONS	32418 c
GERANYL ACETONE	
SampleName	
CONTROL 4 LOW	43031 NSD 41839 NSD
APPLICATIONS WATERSTRESSED 4 HIGH	41791 NSD 39723 NSD
APPLICATIONS 2 HIGH	39398 NSD

APPLICATIONS 2 LOW APPLICATIONS	38999 NSD
2,5-DIMETHYL-1- PHENYLPYRROLE	
SampleName	
4 LOW APPLICATIONS CONTROL WATERSTRESSED 4 HIGH APPLICATIONS 2 HIGH APPLICATIONS 2 LOW APPLICATIONS	95812 a 81162 a 78700 a 52700 b 50854 b 48039 b
NONYL ISOTHIOCYANATE	
SampleName	
4 LOW APPLICATIONS CONTROL 2 HIGH APPLICATIONS 4 HIGH APPLICATIONS 2 LOW APPLICATIONS WATERSTRESSED	50265 NSD 46594 NSD 46234 NSD 45229 NSD 38132 NSD 34777 NSD
ISOAMYL DECANOATE	
SampleName	
2 HIGH APPLICATIONS	500286 a
WATERSTRESSED 4 HIGH APPLICATIONS	496536 a 470581 a
APPLICATIONS 2 LOW APPLICATIONS	424634 ab
4 LOW APPLICATIONS	391299 ab
CONTROL	336112 b

2-PHENYLETHYLISOTHOICYANATE

SampleName

4 HIGH	501572900 NSD
APPLICATIONS	
4 LOW	499378491 NSD
APPLICATIONS	
CONTROL	496369164 NSD
2 HIGH	488515860 NSD
APPLICATIONS	
2 LOW	479545822 NSD
APPLICATIONS	
WATERSTRESSED	473106965 NSD

APPENDIX 4 – Chemical analysis stage 3

Attrs	Sample	Mean Media n	a Stdev N	IF	PVal	Sig	pings (NK at	t (NK at
1-PENTEN-3-OL / 1- PENTEN-3-ONE	4 LOW		5 62	3	0.201	NS	5%)	10%)
1-PENTEN-3-OL / 1- PENTEN-3-ONE 1-PENTEN-3-OL / 1-	CONTR OL 4 HIGH	174739 1595 .7 153885 1554	8 36	3 3				
PENTEN-3-ONE 2-ETHYLFURAN	4 LOW	.7 65287. 6695 3	2 2 9 20919. 65	3	0.065	5 10%)	A
2-ETHYLFURAN	CONTR OL	40501. 4233 7		3				В
2-ETHYLFURAN	4 HIGH	36305. 3651 3		3				В
77, 105	CONTR OL	24611 2763		3	0.983	8 NS		
77, 105	4 LOW	24123. 2325 3		3				
77, 105	4 HIGH	3 23149. 2267 7		3				
2-PENTENAL	4 LOW	, 95199 9215		3	0.018	5%	A	А
2-PENTENAL	4 HIGH	71685. 7359 7		3			В	В
2-PENTENAL	CONTR OL	61659. 6094 3		3			В	В
TOLUENE	CONTR OL	9995.7 958		3	0.488	8 NS		
TOLUENE	4 LOW	9869.3 918		3				
TOLUENE	4 HIGH	8453.7 849		3				
HEXANAL	4 LOW	50730. 5042 3	-	3	0.003	8 1%	A	А
HEXANAL	CONTR OL	46604 4480		3			А	А
HEXANAL	4 HIGH	26748 2676		3			В	В
THIACYCLOPENTANE THIACYCLOPENTANE	4 HIGH CONTR OL			3 3	0.063	8 10%	þ	A B
THIACYCLOPENTANE	4 LOW	2418 252	9 470.42	3				В
CIS-3-HEXENAL	4 LOW	8166.7 740		3	0.071	10%	þ	А
CIS-3-HEXENAL	CONTR OL	8041.7 876		3				А
CIS-3-HEXENAL	4 HIGH	5112 515		3				В
2-HEXENAL	CONTR OL			3	0.02	2 5%	A	А
2-HEXENAL	4 LOW	786914 6533	4 .4 5 256992 7 .3	3			A	A

2-HEXENAL	4 HIGH	338238 .7	32849 3	34023. 93	3	E	3 F	В
3-ETHYLTHIOPHENE	CONTR	.7 3243	3 3387	837.33	3	0.111 NS		
3-ETHYLTHIOPHENE	OL 4 LOW	2820.7	2396	9 914.23	3			
3-ETHYLTHIOPHENE	4 HIGH	1787.7	1718	5 133.86	3			
4-HEPTENAL	4 LOW	3812.7	3624		3	0.018 5% A	۹ <i>ا</i>	A
4-HEPTENAL	4 HIGH	2989	2859	5 230.38	3	Ą	AB I	В
4-HEPTENAL	CONTR	2369	2445	2 372.85	3	E	3 1	В
N-HEPTANOL	OL 4 LOW	5139.3	5122	5 241.46	3	0.436 NS		
N-HEPTANOL	CONTR	5074	4322	7 1527.7	3			
N-HEPTANOL	OL 4 HIGH	4181	4250	6 555.72	3			
STYRENE	CONTR	110113		2 14468.	3	0.592 NS		
STYRENE	OL 4 LOW	107035	-	78 4624.8	3			
STYRENE	4 HIGH	102336		62 3170.3	3			
2,4-HEXADIENAL	4 LOW		1 37527		3	0.033 5% A		A
2,4-HEXADIENAL	CONTR OL	35157. 3	33317	4349.0 55	3	A	× /	A
2,4-HEXADIENAL	4 HIGH		23324	1407.5 54	3	E	3 F	В
METHYLTHIOCYCLOPEN TANE	4 LOW	3972	4094	560.05 6	3	0.007 1% A	۰ ۱	A
METHYLTHIOCYCLOPEN TANE	CONTR OL	2094.7	2004	783.94 2	3	E	3 F	В
METHYLTHIOCYCLOPEN TANE	• =	1878.7	1880	_	3	E	3 F	В
1-HEXANETHIOL	CONTR OL	9131.3	7035	3811.6 29	3	0.722 NS		
1-HEXANETHIOL	4 LOW	8905.7	7358	29 3125.4 77	3			
1-HEXANETHIOL	4 HIGH	7358	7315	197.05	3			
1-BROMOHEXANE	4 LOW			1 646049	3	0.142 NS		
1-BROMOHEXANE	CONTR			.2 446287	3			
1-BROMOHEXANE	OL 4 HIGH	356502		184021	3			
2-HEPTENAL	4 LOW	15589.	13 12661	7142.8	3	0.105 NS		
2-HEPTENAL	CONTR	3 9245	8794	54 1737.9	3			
2-HEPTENAL	OL 4 HIGH	6818.7	7070	57 893.90	3			
				5				

3-ETHYL-2-HYDROXY-2- CYCLOPENTEN-1-ONE	4 LOW	1291.3	1389	187.64 4	3	0.222 NS	
3-ETHYL-2-HYDROXY-2- CYCLOPENTEN-1-ONE	CONTR OL	803	898	759.96 6	3		
3-ETHYL-2-HYDROXY-2- CYCLOPENTEN-1-ONE	4 HIGH	576.3	556	53.482	3		
BENZALDEHYDE	CONTR OL	109645 8	80723	53615. 53	3	0.289 NS	
BENZALDEHYDE	4 LOW	87626. 8 7	2807	19205. 55	3		
BENZALDEHYDE	4 HIGH	62571.6 3	2796	1388.6 98	3		
2,6-DIMETHYL-5- HEPTEN-1-OL	4 LOW	43875. 2 3	8759	28604. 02	3	0.341 NS	
2,6-DIMETHYL-5- HEPTEN-1-OL	CONTR OL	29189 2	8073	4238.6 58	3		
2,6-DIMETHYL-5- HEPTEN-1-OL	4 HIGH	22398 2	2298	1239.0 3	3		
2,4-HEPTADIENAL	4 LOW	293499 2 .3	9496 4	15250. 84	3	0.014 5% A	A A
2,4-HEPTADIENAL	4 HIGH	263011 2	26370 2	8428.7 7	3	E	3 B
2,4-HEPTADIENAL	CONTR OL	249815 2 .7	4843 7	13333. 56	3	E	3 B
BENZENEMETHANOL BENZENEMETHANOL	4 LOW 4 HIGH		8020 6764	845.06 262.49 3	3 3	0.019 5% A E	A A B B
BENZENEMETHANOL	CONTR OL	6116	6249	690.17 9	3	E	B B
3-METHOXYPHENOL	4 LOW	6310.7	4462	3232.3 43	3	0.167 NS	
3-METHOXYPHENOL	CONTR OL	4733	3915	1725.1 59	3		
3-METHOXYPHENOL	4 HIGH	2494.7	2340	277.47 1	3		
2,2,6- TRIMETHYLCYCLOHEXA NONE	CONTR OL	4387.7	3636	2136.1 04	3	0.338 NS	
2,2,6- TRIMETHYLCYCLOHEXA NONE	4 LOW	4176.7	3512	1310.2 16	3		
2,2,6- TRIMETHYLCYCLOHEXA NONE	4 HIGH	2632.7	2688	230.04 6	3		
BENZENEACETALDEHY DE	CONTR OL	123313 7 .3	9940	82653. 34	3	0.587 NS	
BENZENEACETALDEHY DE		.3 113076 8 .7	6144	• •	3		
BENZENEACETALDEHY DE	4 HIGH	73547 7	4471	3478.2 98	3		
3-METHYLBUTYL ISOTHIOCYANATE	CONTR OL	34207.3 7	2812	4284.5 21	3	0.022 5% A	A A
3-METHYLBUTYL ISOTHIOCYANATE	4 LOW	30087.3 7	80478	1694.5 59	3	ŀ	AB A
3-METHYLBUTYL	4 HIGH	25235 2	4434		3	E	B B
രാറ)5 Horticult	ural Develo	nmen	t Council		7	'8

78

ISOTHIOCYANATE				3	-		-
3,5-OCTADIEN-2-ONE	4 LOW	11843	9581	4563.8	3	0.023 5% A	A
		4707.0	5007	11	0	D	-
3,5-OCTADIEN-2-ONE	CONTR	4727.3	5207	942.03	3	В	В
	OL 4 HIGH	4040	2051	5 668.41	2	Р	Б
3,5-OCTADIEN-2-ONE		4049	3951		3 3	B	B
CIS-3-HEXENAL DIETHYL		5706	5357	3027.6	3	0.062 10%	А
ACETAL	OL		4070	24	0		
CIS-3-HEXENAL DIETHYL	_ 4 LOW	5154.7	4673	1187.1	3		A
ACETAL	4111011	4445 0	4050	96	0		-
CIS-3-HEXENAL DIETHYL	4 HIGH	1415.3	1359	346.94	3		В
ACETAL	41.014		4040	7	•	0.070.10	
ETHYL-TRANS-4-	4 LOW	8296	4813	7282.5	3	0.376 NS	
HEPTENOATE		5044	4050	46	•		
ETHYL-TRANS-4-	CONTR	5044	4653	2739.5	3		
HEPTENOATE	OL		~~ /=	80			
ETHYL-TRANS-4-	4 HIGH	2733	2947	386.35	3		
HEPTENOATE				2	-		
(E)-2-NONEN-1-OL	4 HIGH	23708.	23854	458.60	3	0.555 NS	
/		7		9	_		
(E)-2-NONEN-1-OL	4 LOW	21601.	22086	3143.6	3		
		7		08			
(E)-2-NONEN-1-OL	CONTR	21026.	19151	4187.4	3		
	OL	7		02			
N-PENTYL	CONTR	10780.	11329	1254.8	3	0.025 5% A	A
ISOTHIOCYANATE	OL	7		24			
N-PENTYL	4 HIGH	8403	8320	378.39	3	В	В
ISOTHIOCYANATE							
N-PENTYL	4 LOW	8125	7916	954.81	3	В	В
ISOTHIOCYANATE				3			
CARVACROL	4 LOW	1614	1475	254.73	3	0.005 1% A	А
				7	-	_	_
CARVACROL	CONTR	1052	1105	101.47	3	В	В
	OL			4	-	_	_
CARVACROL	4 HIGH	921		87.504	3	В	В
1-TERPINEOL	4 LOW	1130.3	925	361.72	3	0.362 NS	
				7			
1-TERPINEOL	CONTR	865.3	818	243.47	3		
	OL			6			
1-TERPINEOL	4 HIGH	821.7	842	132.67	3		
				4			
BENZENEETHANOL	4 LOW		20623	32729.	3	0.203 NS	
		3		41	-		
BENZENEETHANOL	CONTR	17894.	11481	11656.	3		
	OL	3		31	_		
BENZENEETHANOL	4 HIGH	6157.7	6354	818.35	3		
				8			
2,2,6,6-TETRAMETHYL-	CONTR	1529.3	1708	595.45	3	0.089 10%	A
3,5-HEPTANEDIONE	OL			5			
2,2,6,6-TETRAMETHYL-	4 LOW	1251.7	1264	206.77	3		AB
3,5-HEPTANEDIONE				6	_		_
2,2,6,6-TETRAMETHYL-	4 HIGH	722	668	103.20	3		В
3,5-HEPTANEDIONE				4	-		
2,6-NONADIENAL	4 LOW	7725	6750	1769.9	3	0.199 NS	
				01			

2,6-NONADIENAL	4 HIGH	5530	5628	394.24 4	3		
2,6-NONADIENAL	CONTR OL	5483.7	6539	4 1901.1 01	3		
4-METHYLPENTYL ISOTHIOCYANATE	CONTR OL	88940	91318	4201.3 58	3	0.013 5% A	А
4-METHYLPENTYL ISOTHIOCYANATE	4 LOW	77995. 3	77389	7370.2 29	3	AB	В
4-METHYLPENTYL ISOTHIOCYANATE	4 HIGH	-	63655	6992.0 95	3	В	С
HEXYL ISOTHIOCYANATE	CONTR OL	14680	14271	1569.0 04	3	0.081 10%	А
HEXYL ISOTHIOCYANATE	4 LOW	13096. 3	13187	626.93 6	3		AB
HEXYL ISOTHIOCYANATE	4 HIGH		12523	503.83 4	3		В
METHYL SALICYLATE	4 LOW	11954	10880	2185.7 7	3	0.002 1% A	А
METHYL SALICYLATE	CONTR OL	10412	10696	588.82 7	3	А	А
METHYL SALICYLATE	4 HIGH	5370.7	5343	58.62	3	В	В
ETHYL NICOTINATE	4 LOW	17317.	10463	15814.	3	0.49 NS	
	OONTO	7	15004	45	•		
	CONTR OL	12314. 7		7810.4 99	3		
ETHYL NICOTINATE	4 HIGH	6740.3	7100	1489.4 34	3		
3-ETHYL-4-METHYL-1H- PYRROLE-2,5-DIONE	4 LOW	24227. 7		13172. 25	3	0.086 10%	A
3-ETHYL-4-METHYL-1H-	CONTR	10501.	8568	5526.7	3		В
PYRROLE-2,5-DIONE 3-ETHYL-4-METHYL-1H-	OL 4 HIGH	3 6210.3	5102	19 2406.2	3		В
PYRROLE-2,5-DIONE		044000	40047	3	0	0.470 NO	
(3-METHYL-3- BUTENYL)BENZENE	CONTR OL	914063		179458 .2	3	0.476 NS	
(3-METHYL-3-	4 LOW	.3 849426 .7	79231		3		
BUTENYL)BENZENE (3-METHYL-3-	4 HIGH			.3 20254. 04	3		
BUTENYL)BENZENE BETA-CYCLOCITRAL	4 LOW			6357.5	3	0.148 NS	
	• · ·	3		87	C	••••••	
BETA-CYCLOCITRAL	CONTR OL	15943. 3	16039	2289	3		
BETA-CYCLOCITRAL	4 HIGH	15149. 3	15502	696.53 2	3		
BENZENEPROPANENITR ILE	CONTR OL	767531 .3		328714 .9	3	0.066 10%	А
BENZENEPROPANENITR		363483	30177	-	3		В
BENZENEPROPANENITR	4 HIGH	310386	30481	9771.0 56	3		В
3-ETHENYL-4-METHYL- 1H-PYRROLE-2,5-DIONE	4 LOW	 16165. 7		4677.4 85	3	0.07 10%	А
3-ETHENYL-4-METHYL- 1H-PYRROLE-2,5-DIONE	CONTR OL	10376	7028		3		AB

3-ETHENYL-4-METHYL- 1H-PYRROLE-2,5-DIONE	4 HIGH	4747.7	4179	1574.0 27	3		В
N-HEPTYL	CONTR	135567		7062.8	3	0.052 10%	А
ISOTHIOCYANATE N-HEPTYL	OL 4 LOW	.3 128862	1 11780	07 24116.	3		А
ISOTHIOCYANATE			1	53			
N-HEPTYL ISOTHIOCYANATE	4 HIGH	98990. 3	96298	6656.2 36	3		В
CYCLOHEXANE METHYL		100245	85442	28571.	3	0.317 NS	
ISOTHIOCYANATE CYCLOHEXANE METHYL		.3 79783	80282	65 11603.	3		
ISOTHIOCYANATE	4 LOW	19100	00202	55	5		
CYCLOHEXANE METHYL ISOTHIOCYANATE	4 HIGH	78522. 7	79312	2564.7 75	3		
3-METHYLHEXYL	CONTR	, 11638.	11524	218.82	3	0.059 10%	А
	OL	7	0745	9	0		٨
3-METHYLHEXYL ISOTHIOCYANATE	4 LOW	10740	9745	1939.4 39	3		A
3-METHYLHEXYL	4 HIGH	8854.3	8777	198.63	3		В
ISOTHIOCYANATE 4-ETHENYL-2-	4 LOW	11045.	6843	1 8298.1	3	0.916 NS	
METHOXYPHENOL		3		33	_		
4-ETHENYL-2- METHOXYPHENOL	CONTR OL	10698. 7	6311	9048.9 71	3		
4-ETHENYL-2-	4 HIGH	8773	8494	982.66	3		
METHOXYPHENOL 4-	CONTR	7663.7	1182	8 11408.	3	0.512 NS	
ETHOXYBENZALDEHYD	OL	1003.1	1102	05	5	0.512 115	
E 4-	4 HIGH	1921.3	2062	279.00	3		
ETHOXYBENZALDEHYD	4111011	1921.5	2002	279.00	5		
E 4-	4 LOW	1871.3	2359	1681.4	3		
4- ETHOXYBENZALDEHYD	4 LOW	1071.3	2309	04	3		
		20000	20712	1010 0	2	0.174 NS	
3-(METHYLTHIO)PROPYL ISOTHIOCYANATE	. 4 חוטח	20960	20712	1010.0 28	3	0.174 NS	
3-(METHYLTHIO)PROPYL			17864	3259.3	3		
ISOTHIOCYANATE 3-(METHYLTHIO)PROPYL	OL . 4 LOW	3 15549.	16969	95 4045.8	3		
ISOTHIOCYANATE		3	7000	32	0	0.005 NO	
94, 117, 142	CONTR OL	8305.7	7836	2416.9 7	3	0.235 NS	
94, 117, 142	4 HIGH	6161.7	5984	974.72	3		
94, 117, 142	4 LOW	6046	5540	1 1017.2	3		
ETHYL	4 LOW	7144.3	5096	27 6028.4	3	0.432 NS	
HYDROCINNAMATE				02			
ETHYL HYDROCINNAMATE	CONTR OL	4406	2783	4219.4 86	3		
ETHYL	4 HIGH	2327	2462	278.25	3		
HYDROCINNAMATE OCTYL	4 LOW	54397.	45367	3 19809.	3	0.289 NS	
ISOTHIOCYANATE	0.11	3		55	J		

OCTYL	CONTR	51944. 52882		3		
ISOTHIOCYANATE	OL	3	92	-		
OCTYL	4 HIGH	38175. 37044		3		
ISOTHIOCYANATE		7	03			
METHYLHEPTYL	4 LOW	6445 5355	2130.5	3 0.1	198 NS	
ISOTHIOCYANATE			34			
METHYLHEPTYL	CONTR	6353.7 6200	450.6	3		
ISOTHIOCYANATE	OL					
METHYLHEPTYL	4 HIGH	4550.7 4485	184.48	3		
ISOTHIOCYANATE			4			
GERANYL ACETONE	4 LOW	20463. 15639	10039.	3 0.2	282 NS	
		7	76	0 0.1		
GERANYL ACETONE	4 HIGH	16486. 16529	-	3		
SERVICE / GEF GIVE		7	8	0		
GERANYL ACETONE	CONTR	12001 11934		3		
OERAITE AGETORE	OL	12001 11304	5	0		
2,5-DIMETHYL-1-	4 LOW	43664. 44502	-	3 < 0.00	01 0.10 A	А
PHENYLPYRROLE	4 LOW	43004. 44302	61	5 <0.00	%	~
		24876. 24594		3	B	В
2,5-DIMETHYL-1-	4 HIGH			3	D	D
PHENYLPYRROLE		7	92	0	Б	Р
2,5-DIMETHYL-1-	CONTR	19366. 20185		3	В	В
PHENYLPYRROLE	OL	3	73			
NONYL	CONTR	8759 7222	4518.9	3 0.3	355 NS	
ISOTHIOCYANATE	OL		84	-		
NONYL	4 LOW	7666.3 6509		3		
ISOTHIOCYANATE			41			
NONYL	4 HIGH	4924.3 4897	300.93	3		
ISOTHIOCYANATE			2			
ISOAMYL DECANOATE	4 LOW	513714 52408	45045.	3 0	.38 NS	
		.3 6	11			
ISOAMYL DECANOATE	4 HIGH	502406 51156	29645.	3		
		.3 3	28			
ISOAMYL DECANOATE	CONTR	453892 41692	71107.	3		
	OL	2	8			
2-PHENYLETHYL	CONTR	1.49E+ 1.53E	999127	3 0.0	052 10%	А
ISOTHIOCYANATE	OL	08 +08	7			
				-		•

А

В

